forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Co-authored-by: Robert Shaw <114415538+robertgshaw2-neuralmagic@users.noreply.github.com>
- Loading branch information
1 parent
8840753
commit c2637a6
Showing
4 changed files
with
230 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
1 change: 1 addition & 0 deletions
1
vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
168 changes: 168 additions & 0 deletions
168
...model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,168 @@ | ||
from typing import Callable, List, Optional | ||
|
||
import torch | ||
from torch.nn import Parameter | ||
|
||
from vllm import _custom_ops as ops | ||
from vllm.model_executor.layers.quantization.compressed_tensors.schemes import ( | ||
CompressedTensorsScheme) | ||
from vllm.model_executor.layers.quantization.gptq_marlin import ( | ||
GPTQ_MARLIN_MAX_PARALLEL, GPTQ_MARLIN_MIN_THREAD_N, GPTQMarlinState, | ||
marlin_permute_scales) | ||
from vllm.model_executor.utils import set_weight_attrs | ||
|
||
__all__ = ["CompressedTensorsW4A16"] | ||
|
||
|
||
class CompressedTensorsW4A16(CompressedTensorsScheme): | ||
|
||
def __init__(self, | ||
strategy: str, | ||
num_bits: int, | ||
group_size: Optional[int] = None): | ||
self.num_bits = num_bits | ||
self.strategy = strategy | ||
self.group_size = group_size | ||
|
||
if self.strategy == "group" and self.group_size is None: | ||
raise ValueError( | ||
"group_size must be given when using strategy group") | ||
|
||
def create_weights(self, layer: torch.nn.Module, input_size: int, | ||
output_partition_sizes: List[int], | ||
input_size_per_partition: int, | ||
params_dtype: torch.dtype, weight_loader: Callable, | ||
**kwargs): | ||
|
||
pack_factor = 32 // self.num_bits | ||
output_size_per_partition = sum(output_partition_sizes) | ||
|
||
if self.group_size is not None: | ||
group_size = self.group_size | ||
else: | ||
group_size = input_size | ||
|
||
weight_scale_dim = None | ||
scales_and_zp_size = input_size // group_size | ||
|
||
if (input_size != input_size_per_partition | ||
and self.group_size is not None): | ||
weight_scale_dim = 1 | ||
scales_and_zp_size = input_size_per_partition // group_size | ||
|
||
weight = Parameter( | ||
torch.empty( | ||
output_size_per_partition, | ||
input_size_per_partition // pack_factor, | ||
dtype=torch.int32, | ||
), | ||
requires_grad=False, | ||
) | ||
|
||
set_weight_attrs( | ||
weight, { | ||
"input_dim": 1, | ||
"output_dim": 0, | ||
"packed_dim": 1, | ||
"pack_factor": pack_factor | ||
}) | ||
set_weight_attrs(weight, {"weight_loader": weight_loader}) | ||
|
||
layer.register_parameter("weight_packed", weight) | ||
|
||
weight_scale = Parameter( | ||
torch.empty( | ||
output_size_per_partition, | ||
scales_and_zp_size, | ||
dtype=params_dtype, | ||
), | ||
requires_grad=False, | ||
) | ||
|
||
set_weight_attrs(weight_scale, {"weight_loader": weight_loader}) | ||
set_weight_attrs(weight_scale, { | ||
"input_dim": weight_scale_dim, | ||
"output_dim": 0 | ||
}) | ||
layer.register_parameter("weight_scale", weight_scale) | ||
|
||
# A 2D array defining the original shape of the weights | ||
# before packing | ||
weight_shape = Parameter(torch.empty(2, dtype=torch.int64), | ||
requires_grad=False) | ||
|
||
layer.register_parameter("weight_shape", weight_shape) | ||
set_weight_attrs(weight_shape, {"weight_loader": weight_loader}) | ||
|
||
layer.input_size_per_partition = input_size_per_partition | ||
layer.output_size_per_partition = output_size_per_partition | ||
|
||
layer.input_size = input_size | ||
layer.marlin_state = GPTQMarlinState.REPACK | ||
layer.is_k_full = True | ||
layer.group_size = group_size | ||
|
||
max_workspace_size = ( | ||
output_size_per_partition // | ||
GPTQ_MARLIN_MIN_THREAD_N) * GPTQ_MARLIN_MAX_PARALLEL | ||
|
||
workspace = torch.zeros(max_workspace_size, | ||
dtype=torch.int, | ||
requires_grad=False) | ||
layer.workspace = workspace | ||
|
||
def apply_weights(self, layer: torch.nn.Module, x: torch.Tensor): | ||
reshaped_x = x.reshape(-1, x.shape[-1]) | ||
|
||
size_m = reshaped_x.shape[0] | ||
part_size_n = layer.output_size_per_partition | ||
part_size_k = layer.input_size_per_partition | ||
|
||
out_shape = x.shape[:-1] + (part_size_n, ) | ||
|
||
if layer.marlin_state == GPTQMarlinState.REPACK: | ||
layer.marlin_state = GPTQMarlinState.READY | ||
|
||
# Newly generated tensors need to replace existing tensors that are | ||
# already registered as parameters by vLLM (and won't be freed) | ||
def replace_tensor(name, new_t): | ||
# It is important to use resize_() here since it ensures | ||
# the same buffer is reused | ||
getattr(layer, name).resize_(new_t.shape) | ||
getattr(layer, name).copy_(new_t) | ||
del new_t | ||
|
||
cur_device = layer.weight_packed.device | ||
|
||
# Reset g_idx related tensors | ||
layer.g_idx = Parameter(torch.empty(0, | ||
dtype=torch.int, | ||
device=cur_device), | ||
requires_grad=False) | ||
layer.g_idx_sort_indices = Parameter(torch.empty( | ||
0, dtype=torch.int, device=cur_device), | ||
requires_grad=False) | ||
|
||
# Repack weights | ||
marlin_qweight = ops.gptq_marlin_repack( | ||
layer.weight_packed.t().contiguous(), layer.g_idx_sort_indices, | ||
part_size_k, part_size_n, self.num_bits) | ||
|
||
replace_tensor("weight_packed", marlin_qweight) | ||
|
||
# Permute scales | ||
scales_size_k = part_size_k | ||
scales_size_n = part_size_n | ||
|
||
marlin_scales = marlin_permute_scales( | ||
layer.weight_scale.squeeze().t().contiguous(), scales_size_k, | ||
scales_size_n, layer.group_size, self.num_bits) | ||
replace_tensor("weight_scale", marlin_scales) | ||
|
||
output = ops.gptq_marlin_gemm(reshaped_x, layer.weight_packed, | ||
layer.weight_scale, layer.g_idx, | ||
layer.g_idx_sort_indices, | ||
layer.workspace, self.num_bits, size_m, | ||
part_size_n, part_size_k, | ||
layer.is_k_full) | ||
return output.reshape(out_shape) |