Skip to content

Commit

Permalink
[CI] Disable non-lazy string operation on logging (vllm-project#4326)
Browse files Browse the repository at this point in the history
Co-authored-by: Danny Guinther <dguinther@neuralmagic.com>
  • Loading branch information
rkooo567 and Danny Guinther authored Apr 26, 2024
1 parent 2f30e7c commit a88081b
Show file tree
Hide file tree
Showing 31 changed files with 176 additions and 149 deletions.
5 changes: 3 additions & 2 deletions docs/source/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,9 +98,10 @@ def setup(app):
for mock_target in autodoc_mock_imports:
if mock_target in sys.modules:
logger.info(
f"Potentially problematic mock target ({mock_target}) found; "
"Potentially problematic mock target (%s) found; "
"autodoc_mock_imports cannot mock modules that have already "
"been loaded into sys.modules when the sphinx build starts.")
"been loaded into sys.modules when the sphinx build starts.",
mock_target)


class MockedClassDocumenter(autodoc.ClassDocumenter):
Expand Down
1 change: 1 addition & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@ select = [
"SIM",
# isort
# "I",
"G",
]
ignore = [
# star imports
Expand Down
7 changes: 4 additions & 3 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,7 @@ def compute_num_jobs(self):
num_jobs = os.environ.get("MAX_JOBS", None)
if num_jobs is not None:
num_jobs = int(num_jobs)
logger.info(f"Using MAX_JOBS={num_jobs} as the number of jobs.")
logger.info("Using MAX_JOBS=%d as the number of jobs.", num_jobs)
else:
try:
# os.sched_getaffinity() isn't universally available, so fall
Expand All @@ -81,8 +81,9 @@ def compute_num_jobs(self):
nvcc_threads = os.getenv("NVCC_THREADS", None)
if nvcc_threads is not None:
nvcc_threads = int(nvcc_threads)
logger.info(f"Using NVCC_THREADS={nvcc_threads} as the number"
" of nvcc threads.")
logger.info(
"Using NVCC_THREADS=%d as the number of nvcc threads.",
nvcc_threads)
else:
nvcc_threads = 1
num_jobs = max(1, num_jobs // nvcc_threads)
Expand Down
16 changes: 8 additions & 8 deletions vllm/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -167,9 +167,9 @@ def _verify_quantization(self) -> None:
f"supported in ROCm.")
if self.quantization != "marlin":
logger.warning(
f"{self.quantization} quantization is not fully "
"%s quantization is not fully "
"optimized yet. The speed can be slower than "
"non-quantized models.")
"non-quantized models.", self.quantization)

def _verify_cuda_graph(self) -> None:
if self.max_context_len_to_capture is None:
Expand Down Expand Up @@ -360,7 +360,7 @@ def verify_with_parallel_config(
if cpu_memory_usage > 0.7 * total_cpu_memory:
raise ValueError("Too large swap space. " + msg)
elif cpu_memory_usage > 0.4 * total_cpu_memory:
logger.warning("Possibly too large swap space. " + msg)
logger.warning("Possibly too large swap space. %s", msg)


@dataclass
Expand Down Expand Up @@ -898,8 +898,8 @@ def verify_with_model_config(self, model_config: ModelConfig):
"awq", "gptq"
]:
# TODO support marlin and squeezellm
logger.warning(f"{model_config.quantization} quantization is not "
"tested with LoRA yet.")
logger.warning("%s quantization is not tested with LoRA yet.",
model_config.quantization)

def verify_with_scheduler_config(self, scheduler_config: SchedulerConfig):
if scheduler_config.max_num_batched_tokens > 65528:
Expand Down Expand Up @@ -1008,7 +1008,7 @@ def _get_and_verify_dtype(
pass
else:
# Casting between float16 and bfloat16 is allowed with a warning.
logger.warning(f"Casting {config_dtype} to {torch_dtype}.")
logger.warning("Casting %s to %s.", config_dtype, torch_dtype)

return torch_dtype

Expand Down Expand Up @@ -1051,8 +1051,8 @@ def _get_and_verify_max_len(
logger.warning(
"The model's config.json does not contain any of the following "
"keys to determine the original maximum length of the model: "
f"{possible_keys}. Assuming the model's maximum length is "
f"{default_max_len}.")
"%d. Assuming the model's maximum length is %d.", possible_keys,
default_max_len)
derived_max_model_len = default_max_len

rope_scaling = getattr(hf_config, "rope_scaling", None)
Expand Down
10 changes: 6 additions & 4 deletions vllm/core/scheduler.py
Original file line number Diff line number Diff line change
Expand Up @@ -617,8 +617,9 @@ def _schedule_prefills(

if num_new_tokens > self.prompt_limit:
logger.warning(
f"Input prompt ({num_new_tokens} tokens) is too long"
f" and exceeds limit of {self.prompt_limit}")
"Input prompt (%d tokens) is too long"
" and exceeds limit of %d", num_new_tokens,
self.prompt_limit)
for seq in waiting_seqs:
seq.status = SequenceStatus.FINISHED_IGNORED
ignored_seq_groups.append(seq_group)
Expand All @@ -631,8 +632,9 @@ def _schedule_prefills(
break
elif can_allocate == AllocStatus.NEVER:
logger.warning(
f"Input prompt ({num_new_tokens} tokens) is too long"
f" and exceeds the capacity of block_manager")
"Input prompt (%d tokens) is too long"
" and exceeds the capacity of block_manager",
num_new_tokens)
for seq in waiting_seqs:
seq.status = SequenceStatus.FINISHED_IGNORED
ignored_seq_groups.append(seq_group)
Expand Down
8 changes: 4 additions & 4 deletions vllm/distributed/device_communicators/custom_all_reduce.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ def init_custom_ar() -> None:
return

if world_size not in _SUPPORTED_WORLD_SIZES:
logger.warn(
logger.warning(
"Custom allreduce is disabled due to an unsupported world size: "
"%d. Supported world sizes: %s. To silence this warning, specify"
" disable_custom_all_reduce=True explicitly.", world_size,
Expand All @@ -47,7 +47,7 @@ def init_custom_ar() -> None:
# note: num dev can be larger than world_size if we're only using
# first few GPUs
if num_dev < world_size:
logger.warn(
logger.warning(
"Cannot test GPU P2P because not all GPUs are visible to the "
"current process. This might be the case if 'CUDA_VISIBLE_DEVICES'"
" is set.")
Expand All @@ -62,7 +62,7 @@ def init_custom_ar() -> None:
# this checks hardware and driver support for NVLink
full_nvlink = _is_full_nvlink(device_ids)
if world_size > 2 and not full_nvlink:
logger.warn(
logger.warning(
"Custom allreduce is disabled because it's not supported on more"
" than two PCIe-only GPUs. To silence this warning, specify"
" disable_custom_all_reduce=True explicitly.")
Expand All @@ -71,7 +71,7 @@ def init_custom_ar() -> None:
# this is expensive to compute at the first time
# then we cache the result
if not _can_p2p(rank, world_size):
logger.warn(
logger.warning(
"Custom allreduce is disabled because your platform lacks GPU P2P"
" capability or P2P test failed. To silence this warning, specify"
" disable_custom_all_reduce=True explicitly.")
Expand Down
15 changes: 8 additions & 7 deletions vllm/distributed/device_communicators/pynccl.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,15 +43,16 @@
nccl = ctypes.CDLL(so_file)
except Exception as e:
logger.error(
f"Failed to load NCCL library from {so_file} ."
"Failed to load NCCL library from %s ."
"It is expected if you are not running on NVIDIA/AMD GPUs."
"Otherwise, the nccl library might not exist, be corrupted "
f"or it does not support the current platform {platform.platform()}."
f"One solution is to download libnccl2 version 2.18 from "
f"https://developer.download.nvidia.com/compute/cuda/repos/ "
f"and extract the libnccl.so.2 file. If you already have the "
f"library, please set the environment variable VLLM_NCCL_SO_PATH"
" to point to the correct nccl library path.")
"or it does not support the current platform %s."
"One solution is to download libnccl2 version 2.18 from "
"https://developer.download.nvidia.com/compute/cuda/repos/ "
"and extract the libnccl.so.2 file. If you already have the "
"library, please set the environment variable VLLM_NCCL_SO_PATH"
" to point to the correct nccl library path.", so_file,
platform.platform())
raise e

# === export types and functions from nccl to Python ===
Expand Down
4 changes: 2 additions & 2 deletions vllm/distributed/device_communicators/pynccl_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
except Exception as e:
# in non-NVIDIA environments, we can't import the nccl module
# e.g. when running on machines with AMD GPUs
logger.info(f"Failed to import NCCL library: {e}")
logger.info("Failed to import NCCL library: %s", e)
logger.info("It is expected if you are not running on NVIDIA GPUs.")
pass

Expand All @@ -40,7 +40,7 @@ def set_pynccl_stream(stream: torch.cuda.Stream):
def init_process_group(group: Optional[ProcessGroup] = None) -> None:
assert not is_initialized()
global comm
logger.info(f"vLLM is using nccl=={ncclGetVersion()}")
logger.info("vLLM is using nccl==%s", ncclGetVersion())
comm = NCCLCommunicator(group=group)


Expand Down
6 changes: 4 additions & 2 deletions vllm/distributed/parallel_state.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,8 +57,10 @@ def init_distributed_environment(
local_rank: int = -1,
backend: str = "nccl",
):
logger.debug(f"{world_size=} {rank=} {local_rank=} "
f"{distributed_init_method=} {backend=}")
logger.debug(
"world_size=%d rank=%d local_rank=%d "
"distributed_init_method=%s backend=%s", world_size, rank, local_rank,
distributed_init_method, backend)
if not torch.distributed.is_initialized():
assert distributed_init_method is not None, (
"distributed_init_method must be provided when initializing "
Expand Down
4 changes: 2 additions & 2 deletions vllm/distributed/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -112,7 +112,7 @@ def gpu_p2p_access_check(i: int, j: int) -> bool:
and (not os.path.exists(path)):
# only the local master process (with local_rank == 0) can
# enter this block to calculate the cache
logger.info(f"generating GPU P2P access cache for in {path}")
logger.info("generating GPU P2P access cache for in %s", path)
cache = {}
for _i in range(num_dev):
for _j in range(num_dev):
Expand All @@ -126,7 +126,7 @@ def gpu_p2p_access_check(i: int, j: int) -> bool:
if is_distributed:
cpu_world_group = get_cpu_world_group()
dist.barrier(cpu_world_group)
logger.info(f"reading GPU P2P access cache from {path}")
logger.info("reading GPU P2P access cache from %s", path)
with open(path, "r") as f:
cache = json.load(f)
_gpu_p2p_access_cache = cache
Expand Down
18 changes: 9 additions & 9 deletions vllm/engine/async_llm_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -117,7 +117,7 @@ def process_request_output(self,
self._request_streams[request_id].put(request_output)
if request_output.finished:
if verbose:
logger.info(f"Finished request {request_id}.")
logger.info("Finished request %s.", request_id)
self.abort_request(request_id)

def process_exception(self,
Expand All @@ -128,7 +128,7 @@ def process_exception(self,
"""Propagate an exception from the engine."""
self._request_streams[request_id].put(exception)
if verbose:
logger.info(f"Finished request {request_id}.")
logger.info("Finished request %s.", request_id)
self.abort_request(request_id)

def add_request(self, request_id: str,
Expand All @@ -151,7 +151,7 @@ def add_request(self, request_id: str,
def abort_request(self, request_id: str, *, verbose: bool = False) -> None:
"""Abort a request during next background loop iteration."""
if verbose:
logger.info(f"Aborted request {request_id}.")
logger.info("Aborted request %s.", request_id)

self._finished_requests.put_nowait(request_id)

Expand Down Expand Up @@ -521,11 +521,11 @@ async def add_request(
if shortened_token_ids is not None:
shortened_token_ids = shortened_token_ids[:self.
max_log_len]
logger.info(f"Received request {request_id}: "
f"prompt: {shortened_prompt!r}, "
f"sampling_params: {sampling_params}, "
f"prompt_token_ids: {shortened_token_ids}, "
f"lora_request: {lora_request}.")
logger.info(
"Received request %s: prompt: %r, "
"sampling_params: %s, prompt_token_ids: %s, "
"lora_request: %s.", request_id, shortened_prompt,
sampling_params, shortened_token_ids, lora_request)

if not self.is_running:
if self.start_engine_loop:
Expand Down Expand Up @@ -717,4 +717,4 @@ async def check_health(self) -> None:
raise RuntimeError("Engine is dead.") from e
else:
await self.engine.check_health_async()
logger.debug(f"Health check took {time.perf_counter()-t}s")
logger.debug("Health check took %fs", time.perf_counter() - t)
61 changes: 36 additions & 25 deletions vllm/engine/llm_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,29 +96,38 @@ def __init__(
usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
) -> None:
logger.info(
f"Initializing an LLM engine (v{vllm.__version__}) with config: "
f"model={model_config.model!r}, "
f"speculative_config={speculative_config!r}, "
f"tokenizer={model_config.tokenizer!r}, "
f"skip_tokenizer_init={model_config.skip_tokenizer_init}, "
f"tokenizer_mode={model_config.tokenizer_mode}, "
f"revision={model_config.revision}, "
f"tokenizer_revision={model_config.tokenizer_revision}, "
f"trust_remote_code={model_config.trust_remote_code}, "
f"dtype={model_config.dtype}, "
f"max_seq_len={model_config.max_model_len}, "
f"download_dir={load_config.download_dir!r}, "
f"load_format={load_config.load_format}, "
f"tensor_parallel_size={parallel_config.tensor_parallel_size}, "
f"disable_custom_all_reduce="
f"{parallel_config.disable_custom_all_reduce}, "
f"quantization={model_config.quantization}, "
f"enforce_eager={model_config.enforce_eager}, "
f"kv_cache_dtype={cache_config.cache_dtype}, "
f"quantization_param_path={model_config.quantization_param_path}, "
f"device_config={device_config.device}, "
f"decoding_config={decoding_config!r}, "
f"seed={model_config.seed})")
"Initializing an LLM engine (v%s) with config: "
"model=%r, speculative_config=%r, tokenizer=%r, "
"skip_tokenizer_init=%s, tokenizer_mode=%s, revision=%s, "
"tokenizer_revision=%s, trust_remote_code=%s, dtype=%s, "
"max_seq_len=%d, download_dir=%r, load_format=%s, "
"tensor_parallel_size=%d, disable_custom_all_reduce=%s"
"quantization=%s, enforce_eager=%s, kv_cache_dtype=%s, "
"quantization_param_path=%s, device_config=%s, "
"decoding_config=%r, seed=%d)",
vllm.__version__,
model_config.model,
speculative_config,
model_config.tokenizer,
model_config.skip_tokenizer_init,
model_config.tokenizer_mode,
model_config.revision,
model_config.tokenizer_revision,
model_config.trust_remote_code,
model_config.dtype,
model_config.max_model_len,
load_config.download_dir,
load_config.load_format,
parallel_config.tensor_parallel_size,
parallel_config.disable_custom_all_reduce,
model_config.quantization,
model_config.enforce_eager,
cache_config.cache_dtype,
model_config.quantization_param_path,
device_config.device,
decoding_config,
model_config.seed,
)
# TODO(woosuk): Print more configs in debug mode.

self.model_config = model_config
Expand Down Expand Up @@ -237,8 +246,10 @@ def _initialize_kv_caches(self) -> None:

if self.cache_config.num_gpu_blocks_override is not None:
num_gpu_blocks_override = self.cache_config.num_gpu_blocks_override
logger.info(f"Overriding {num_gpu_blocks=} with "
f"{num_gpu_blocks_override=}")
logger.info(
"Overriding num_gpu_blocks=%d with "
"num_gpu_blocks_override=%d", num_gpu_blocks,
num_gpu_blocks_override)
num_gpu_blocks = num_gpu_blocks_override

self.cache_config.num_gpu_blocks = num_gpu_blocks
Expand Down
21 changes: 13 additions & 8 deletions vllm/engine/metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -227,14 +227,19 @@ def log(self, stats: Stats) -> None:

# Log to stdout.
logger.info(
f"Avg prompt throughput: {prompt_throughput:.1f} tokens/s, "
f"Avg generation throughput: "
f"{generation_throughput:.1f} tokens/s, "
f"Running: {stats.num_running} reqs, "
f"Swapped: {stats.num_swapped} reqs, "
f"Pending: {stats.num_waiting} reqs, "
f"GPU KV cache usage: {stats.gpu_cache_usage * 100:.1f}%, "
f"CPU KV cache usage: {stats.cpu_cache_usage * 100:.1f}%")
"Avg prompt throughput: %.1f tokens/s, "
"Avg generation throughput: %.1f tokens/s, "
"Running: %d reqs, Swapped: %d reqs, "
"Pending: %d reqs, GPU KV cache usage: %.1f%, "
"CPU KV cache usage: %.1f%",
prompt_throughput,
generation_throughput,
stats.num_running,
stats.num_swapped,
stats.num_waiting,
stats.gpu_cache_usage * 100,
stats.cpu_cache_usage * 100,
)

# Reset tracked stats for next interval.
self.num_prompt_tokens = []
Expand Down
4 changes: 2 additions & 2 deletions vllm/entrypoints/openai/api_server.py
Original file line number Diff line number Diff line change
Expand Up @@ -148,8 +148,8 @@ async def authentication(request: Request, call_next):
raise ValueError(f"Invalid middleware {middleware}. "
f"Must be a function or a class.")

logger.info(f"vLLM API server version {vllm.__version__}")
logger.info(f"args: {args}")
logger.info("vLLM API server version %s", vllm.__version__)
logger.info("args: %s", args)

if args.served_model_name is not None:
served_model_names = args.served_model_name
Expand Down
Loading

0 comments on commit a88081b

Please sign in to comment.