Skip to content

AndreyYashkin/fast-asr-russian

Repository files navigation

fast-asr-russian

Overview

This repository is the implementation code of the paper "Development of a compact speech recognition system for mobile devices for the Russian language". The pipeline is done with NeMo toolkit.

Preparing

Install requirements

pip3 install -r requirements.txt

Download some scripts from NeMo which are not included in the install.

python3 utils/update_NeMo_scripts.py

Getting data

python3 datasets/get_golos_dataset.py -d data/golos --wav

If you are not planing to train, then you can download Golos in opus format instead of wav.

python3 datasets/get_commonvoice_data.py --data_root data/mcv

Replace "ё" symbol with "е" as it is done in Golos

sed -i 's/u0451/u0435/' data/mcv/commonvoice_dev_manifest.json
sed -i 's/u0451/u0435/' data/mcv/commonvoice_test_manifest.json
sed -i 's/u0451/u0435/' data/mcv/commonvoice_train_manifest.json

Training

Create word piece tokenization

python process_asr_text_tokenizer.py \
    --manifest=data/golos/train_opus/train_all_golos.jsonl,data/mcv/commonvoice_train_manifest.json \
    --data_root=data/an4 \
    --vocab_size=256 \
    --tokenizer="spe" \
    --spe_type="unigram" \
    --log \
    # --spe_max_sentencepiece_length=???

Check that it is posible to compute CTC loss for the most of samples.

python3 ctc_loss_check.py --config-name=finetune_citrinet_256_eng

Finetune the pretrained english model after you download "STT En Citrinet 256" from NVIDIA NGC and put in nemo_experiments/stt_en_citrinet_256.nemo

python3 speech_to_text_finetune.py --config-name=finetune_citrinet_256_eng

Train finetuned model after editing init_from_ptl_ckpt in conf/citrinet_256_ru.yaml

python3 speech_to_text_ctc_bpe.py --config-path=conf --config-name=citrinet_256_ru

Getting metrics

To compute metrics for data in $MANIFEST_PATH

python speech_to_text_eval.py model_path=nemo_experiments/Citrinet-256-8x-Stride-ru/.../checkpoints/Citrinet-256-8x-Stride-ru.nemo dataset_manifest="$MANIFEST_PATH"

Check mobile performance (Android)

To convert model to format that can be used on mobile see notebook in mobile. Follow pytorch tutorial to measure Android performance. Make sure that you mobile torch version is built with fft support

adb push trace_c_i.ts  /data/local/tmp
adb shell "/data/local/tmp/speed_benchmark_torch --model=/data/local/tmp/trace_c_i.ptl" --no_inputs true --iter 25

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published