-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
f07c264
commit 39d439e
Showing
18 changed files
with
1,731 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,185 @@ | ||
import random | ||
|
||
#!/usr/bin/env python | ||
# -*- coding: utf-8 -*- | ||
|
||
""" Zpark labels""" | ||
|
||
from collections import namedtuple | ||
|
||
from transformers import SegformerFeatureExtractor | ||
from torch.utils.data import Dataset | ||
import os | ||
import cv2 | ||
import torchvision.transforms.functional as TF | ||
|
||
from torchvision import transforms as tfs | ||
import numpy as np | ||
|
||
class ApolloScapeDataset(Dataset): | ||
"""KITTI semantic segmentation dataset.""" | ||
|
||
def __init__(self, root_dir:str, split:str='train', transforms=None): | ||
""" | ||
Args: | ||
root_dir (string): Root directory of the dataset containing the images + annotations. | ||
split: the split of the dataset (train, test or val) | ||
""" | ||
assert split=='train' or split=='test' or split=='val', "The split of the dataset must be one between 'train', 'test' or 'val'" | ||
|
||
self.root_dir = root_dir | ||
self.feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-512-1024") | ||
self.transforms = transforms | ||
|
||
self.img_dir = os.path.join(self.root_dir, "ColorImage", split) | ||
self.ann_dir = os.path.join(self.root_dir, "Label", split) | ||
|
||
# read images | ||
image_file_names = [] | ||
for root, dirs, files in os.walk(self.img_dir): | ||
for f in files: | ||
complete_path = os.path.join(root, f) | ||
#print(complete_path) | ||
image_file_names.append(complete_path) | ||
|
||
self.images = sorted(image_file_names) | ||
# read annotations | ||
annotation_file_names = [] | ||
for root, dirs, files in os.walk(self.ann_dir): | ||
for f in files: | ||
complete_path = os.path.join(root, f) | ||
annotation_file_names.append(complete_path) | ||
|
||
self.annotations = sorted(annotation_file_names) | ||
|
||
|
||
assert len(self.images) == len(self.annotations), "There must be as many images as there are segmentation maps" | ||
|
||
# a label and all meta information | ||
Label = namedtuple('Label', [ | ||
'name' , # The identifier of this label, e.g. 'car', 'person', ... . | ||
# We use them to uniquely name a class | ||
'clsId' , | ||
'id' , # An integer ID that is associated with this label. | ||
'trainId' , | ||
'category' , # The name of the category that this label belongs to | ||
'categoryId' , # The ID of this category. Used to create ground truth images on category level. | ||
'hasInstances', # Whether this label distinguishes between single instances or not | ||
'ignoreInEval', # Whether pixels having this class as ground truth label are ignored during evaluations or not | ||
'color' , # The color of this label | ||
]) | ||
#-------------------------------------------------------------------------------- | ||
# A list of all labels | ||
#-------------------------------------------------------------------------------- | ||
|
||
self.labels = [ | ||
# name clsId id trainId category catId hasInstanceignoreInEval color | ||
Label('others' , 0 , 0, 0 , 'others' , 0 ,False , True , (0, 0, 0) ), | ||
Label('rover' , 0x01 , 1, 1 , 'others' , 0 ,False , True , (0, 0, 0) ), | ||
Label('sky' , 0x11 , 17, 2 , 'sky' , 1 ,False , False , (70, 130, 180) ), | ||
Label('car' , 0x21 , 33, 3 , 'movable object', 2 ,True , False , (0, 0, 142) ), | ||
Label('car_groups' , 0xA1 , 161, 4 , 'movable object', 2 ,True , False , (0, 0, 142) ), | ||
Label('motorbicycle' , 0x22 , 34, 5 , 'movable object', 2 ,True , False , (0, 0, 230) ), | ||
Label('motorbicycle_group' , 0xA2 , 162, 6 , 'movable object', 2 ,True , False , (0, 0, 230) ), | ||
Label('bicycle' , 0x23 , 35, 7 , 'movable object', 2 ,True , False , (119, 11, 32) ), | ||
Label('bicycle_group' , 0xA3 , 163, 8 , 'movable object', 2 ,True , False , (119, 11, 32) ), | ||
Label('person' , 0x24 , 36, 9 , 'movable object', 2 ,True , False , (0, 128, 192) ), | ||
Label('person_group' , 0xA4 , 164, 10 , 'movable object', 2 ,True , False , (0, 128, 192) ), | ||
Label('rider' , 0x25 , 37, 11 , 'movable object', 2 ,True , False , (128, 64, 128) ), | ||
Label('rider_group' , 0xA5 , 165, 12 , 'movable object', 2 ,True , False , (128, 64, 128) ), | ||
Label('truck' , 0x26 , 38, 13 , 'movable object', 2 ,True , False , (128, 0, 192) ), | ||
Label('truck_group' , 0xA6 , 166, 14 , 'movable object', 2 ,True , False , (128, 0, 192) ), | ||
Label('bus' , 0x27 , 39, 15 , 'movable object', 2 ,True , False , (192, 0, 64) ), | ||
Label('bus_group' , 0xA7 , 167, 16 , 'movable object', 2 ,True , False , (192, 0, 64) ), | ||
Label('tricycle' , 0x28 , 40, 17 , 'movable object', 2 ,True , False , (128, 128, 192) ), | ||
Label('tricycle_group' , 0xA8 , 168, 18 , 'movable object', 2 ,True , False , (128, 128, 192) ), | ||
Label('road' , 0x31 , 49, 19 , 'flat' , 3 ,False , False , (192, 128, 192) ), | ||
Label('siderwalk' , 0x32 , 50, 20 , 'flat' , 3 ,False , False , (192, 128, 64) ), | ||
Label('traffic_cone' , 0x41 , 65, 21 , 'road obstacles', 4 ,False , False , (0, 0, 64) ), | ||
Label('road_pile' , 0x42 , 66, 22 , 'road obstacles', 4 ,False , False , (0, 0, 192) ), | ||
Label('fence' , 0x43 , 67, 23 , 'road obstacles', 4 ,False , False , (64, 64, 128) ), | ||
Label('traffic_light' , 0x51 , 81, 24 , 'Roadside objects', 5 ,False , False , (192, 64, 128) ), | ||
Label('pole' , 0x52 , 82, 25 , 'Roadside objects', 5 ,False , False , (192, 128, 128) ), | ||
Label('traffic_sign' , 0x53 , 83, 26 , 'Roadside objects', 5 ,False , False , (0, 64, 64) ), | ||
Label('wall' , 0x54 , 84, 27 , 'Roadside objects', 5 ,False , False , (192, 192, 128) ), | ||
Label('dustbin' , 0x55 , 85, 28 , 'Roadside objects', 5 ,False , False , (64, 0, 192) ), | ||
Label('billboard' , 0x56 , 86, 29 , 'Roadside objects', 5 ,False , False , (192, 0, 192) ), | ||
Label('building' , 0x61 , 97, 30 , 'building' , 6 ,False , False , (192, 0, 128) ), | ||
Label('bridge' , 0x62 , 98, 31 , 'building' , 6 ,False , True , (128, 128, 0) ), | ||
Label('tunnel' , 0x63 , 99, 32 , 'building' , 6 ,False , True , (128, 0, 0) ), | ||
Label('overpass' , 0x64 , 100, 33 , 'building' , 6 ,False , True , (64, 128, 64) ), | ||
Label('vegatation' , 0x71 , 113, 34 , 'natural' , 7 ,False , False , (128, 128, 64) ), | ||
Label('unlabeled' , 0xFF , -1 , -1 , 'unlabeled' , 8 ,False , True , (255, 255, 255) ), | ||
] | ||
|
||
#-------------------------------------------------------------------------------- | ||
# Create dictionaries for a fast lookup | ||
#-------------------------------------------------------------------------------- | ||
def get_id2label(self): | ||
# return id to label object | ||
id2label = { label.id : label for label in self.labels } | ||
return id2label | ||
|
||
def get_label2id(self): | ||
# return name to label object | ||
name2label = { label.name : label for label in self.labels } | ||
return name2label | ||
|
||
def get_trainId2label(self): | ||
# trainId to label object. This is used as a id2label. | ||
trainId2label = {label.trainId: label for label in self.labels} | ||
return trainId2label | ||
|
||
def get_label2color(self): | ||
# return label to color code dictionary | ||
label2color = {label.color : label for label in self.labels} | ||
return label2color | ||
#-------------------------------------------------------------------------------- | ||
|
||
def __len__(self): | ||
return len(self.images) | ||
|
||
def __getitem__(self, idx): | ||
|
||
image = cv2.imread(os.path.join(self.img_dir, self.images[idx]), cv2.IMREAD_COLOR) | ||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | ||
|
||
segmentation_map = cv2.imread(os.path.join(self.ann_dir, self.annotations[idx]), cv2.IMREAD_GRAYSCALE) | ||
for l in self.labels: | ||
segmentation_map = np.where(segmentation_map!=l.id, segmentation_map, l.trainId).astype(np.uint8) | ||
#segmentation_map = cv2.cvtColor(segmentation_map, cv2.COLOR_BGR2GRAY) | ||
|
||
#image = Image.open() | ||
#segmentation_map = Image.open() | ||
|
||
if self.transforms is not None: | ||
augmented = self.transforms(image=image, mask=segmentation_map) | ||
# randomly crop + pad both image and segmentation map to same size | ||
encoded_inputs = self.feature_extractor(augmented['image'], augmented['mask'], return_tensors="pt") | ||
else: | ||
encoded_inputs = self.feature_extractor(image, segmentation_map, return_tensors="pt") | ||
|
||
for k,v in encoded_inputs.items(): | ||
encoded_inputs[k].squeeze_() # remove batch dimension | ||
|
||
return encoded_inputs | ||
''' | ||
ds = ApolloScapeDataset("/home/a.lombardi/ApolloScape_Dataset", split='test', transforms=None) | ||
print(len(ds.labels)) | ||
prova = ds[55] | ||
print(prova["pixel_values"].shape) | ||
print(prova["labels"].shape) | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
plt.imshow(prova["labels"].numpy()) | ||
plt.savefig("prova.png") | ||
p = prova["pixel_values"].numpy() | ||
p = np.swapaxes(p, 0, 2) | ||
p = np.swapaxes(p, 0, 1) | ||
plt.imshow(p) | ||
plt.savefig("prova2.png") | ||
''' |
Oops, something went wrong.