Skip to content

Commit

Permalink
Added TCN model prototype
Browse files Browse the repository at this point in the history
  • Loading branch information
AnanthVivekanand committed Nov 2, 2020
1 parent e5d1285 commit 676d911
Show file tree
Hide file tree
Showing 4 changed files with 1,219 additions and 0 deletions.
109 changes: 109 additions & 0 deletions training/.ipynb_checkpoints/WaveNet-classifier-checkpoint.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"!{sys.executable} -m pip install librosa\n",
"import pandas as pd\n",
"import numpy as np\n",
"import os\n",
"import librosa\n",
"import librosa.display\n",
"import matplotlib.pyplot as plt\n",
"from sklearn.preprocessing import LabelEncoder\n",
"from keras.utils import to_categorical\n",
"import h5py\n",
"import math\n",
"import pickle"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import sys\n",
"import tensorflow as tf\n",
"from urllib.request import urlopen\n",
"from keras.layers import Input, Dense, Lambda, Flatten, Reshape, Activation, Dropout, Add, TimeDistributed, Multiply, Conv1D, Conv2D, MaxPooling1D, AveragePooling1D\n",
"from keras.models import Model, Sequential, load_model\n",
"from keras import backend as K\n",
"from keras import metrics\n",
"from keras import optimizers\n",
"from keras.callbacks import History, ModelCheckpoint"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"all_X = []\n",
"all_Y = []\n",
"fulldatasetpath = 'http://76.213.149.126:8080/audio/'\n",
"metadata = pd.read_csv('http://76.213.149.126:8080/metadata/UrbanSound8K.csv')\n",
"print(metadata)\n",
"for index, row in metadata.iterrows():\n",
" \n",
" file_name = (fulldatasetpath) + 'fold'+str(row[\"fold\"])+'/' + str(row[\"slice_file_name\"])\n",
" all_X.append(file_name.replace(\".wav\", \"_x.pkl\"))\n",
" all_Y.append(file_name.replace(\".wav\", \"_y.pkl\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import train_test_split \n",
"x_train, x_test, y_train, y_test = train_test_split(all_X, all_Y, test_size=0.2, random_state = 42)\n",
"\n",
"shapes = (tf.TensorShape([88200,1]), tf.TensorShape([10,1]))\n",
"train_iter = zip(x_train, y_train)\n",
"def gen_train():\n",
" sample = next(train_iter)\n",
" print (sample)\n",
" return (list(np.array(pickle.load(urlopen(sample[0]))).reshape((1,88200))), np.array(pickle.load(urlopen(sample[1]))).reshape((1,10)))\n",
"\n",
"test_iter = zip(x_test, y_test)\n",
"def gen_test():\n",
" sample = next(test_iter)\n",
" return (pickle.load(urlopen(sample[0])), pickle.load(urlopen(sample[1])))\n",
"\n",
"train_dataset = tf.data.Dataset.from_generator(generator=gen_train,output_types=(tf.float32,tf.float32),output_shapes=shapes)\n",
"test_dataset = tf.data.Dataset.from_generator(generator=gen_test,output_types=(tf.float32,tf.float32),output_shapes=shapes)\n",
"print(gen_train())"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Loading

0 comments on commit 676d911

Please sign in to comment.