Skip to content

AmberLee2427/nancy-brain

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

70 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Nancy Brain

Pages Read the Docs

Turn any GitHub repository into a searchable knowledge base for AI agents.

Load the complete source code, documentation, examples, and notebooks from any package you're working with. Nancy Brain gives AI assistants instant access to:

  • Full source code - actual Python classes, methods, implementation details
  • Live documentation - tutorials, API docs, usage examples
  • Real examples - Jupyter notebooks, test cases, configuration files
  • Smart weighting - boost important docs, learning persists across sessions

The AI can now answer questions like "How do I initialize this class?" or "Show me an example of fitting a light curve" with actual code from the repositories you care about.

🚀 Quick Start

# Install anywhere
pip install nancy-brain

# Initialize a new project
nancy-brain init my-ai-project
cd my-ai-project

# Add some repositories  
nancy-brain add-repo https://github.com/scikit-learn/scikit-learn.git

# Build the knowledge base
nancy-brain build

# Search it!
nancy-brain search "machine learning algorithms"

# Or launch the web interface
nancy-brain ui

🌐 Web Admin Interface

Launch the visual admin interface for easy knowledge base management:

nancy-brain ui

Features:

  • 🔍 Live Search - Test your knowledge base with instant results
  • 📚 Repository Management - Add/remove GitHub repos with visual forms
  • 📄 Article Management - Add/remove PDF articles with visual forms
  • 🏗️ Build Control - Trigger knowledge base builds with options
  • 📊 System Status - Check embeddings, configuration, and health

Perfect for non-technical users and rapid prototyping!

🖥️ Command Line Interface

nancy-brain init <project>        # Initialize new project
nancy-brain add-repo <url>        # Add GitHub repositories  
nancy-brain add-article <url> <name>  # Add PDF articles
nancy-brain add-new-user <user> <pass>  # Create login credentials
nancy-brain build                 # Build knowledge base
nancy-brain search "query"        # Search knowledge base
nancy-brain serve                 # Start HTTP API server
nancy-brain ui                    # Launch web admin interface

Chunking

Nancy Brain uses the chunky-files package for chunking repositories. Configure chunk boundaries with environment variables before running a build:

Variable Purpose Default
CHUNKY_LINES_PER_CHUNK Maximum lines per chunk window 80
CHUNKY_LINE_OVERLAP Overlap between consecutive chunks 10
CHUNKY_MAX_CHARS Maximum characters per chunk 2000

To adjust chunks per file programmatically, supply a custom ChunkerConfig through the build pipeline. For advanced semantic chunkers (Tree-sitter, language-specific splits), install extras: pip install chunky-files[tree].

Optional: Anthropic-powered summaries

Set an API key and opt-in to generate document-level summaries and suggested search weights during a build:

export ANTHROPIC_API_KEY="sk-ant-..."
export ENABLE_DOC_SUMMARIES=true   # or pass --summaries on the build command
nancy-brain build --summaries

Summaries are cached under knowledge_base/cache/summaries/ using the document content hash, so reruns only call Anthropic when files change. Suggested weights are written to knowledge_base/embeddings/auto_model_weights.json for review before merging into your active model_weights.yml.

Technical Architecture

A lightweight Retrieval-Augmented Generation (RAG) knowledge base with:

  • Embedding + search pipeline (txtai / FAISS based)
  • HTTP API connector (FastAPI)
  • Model Context Protocol (MCP) server connector (tools for search / retrieve / tree / weight)
  • Dynamic weighting system (extension/path weights + runtime doc preferences)

Designed to power AI assistants on Slack, IDEs, Claude Desktop, custom GPTs, and any MCP-capable client.


1. Installation & Quick Setup

For Users (Recommended)

# Install the package
pip install nancy-brain

# Initialize a new project
nancy-brain init my-knowledge-base
cd my-knowledge-base

# Add repositories and build
nancy-brain add-repo https://github.com/your-org/repo.git
nancy-brain add-article "https://arxiv.org/pdf/paper.pdf" "paper_name" --description "Important paper"
nancy-brain build

# Launch web interface
nancy-brain ui

For Developers

# Clone and install in development mode
git clone <repo-url>
cd nancy-brain
pip install -e ."[dev]"

# Test installation
pytest -q
nancy-brain --help

Note for developers: The build pipeline now requires docutils and pylatexenc to reliably convert reStructuredText (.rst) and LaTeX (.tex) files to plain text. These are included in the project's dependencies (pyproject.toml) so pip install -e ."[dev]" will install them automatically. If you prefer to install them manually in your environment, run:

pip install docutils pylatexenc

Developer note (CLI & tests): The CLI commands and RAGService avoid importing heavy ML libraries (such as txtai and torch) at module import time. The service defers initializing the embedding Search until an embeddings index is present or a command explicitly needs it. This makes running CLI help and most unit tests fast and safe in minimal environments. If a test needs a functioning Search, mock rag_core.search (insert a dummy module into sys.modules['rag_core.search']) before instantiating RAGService.


2. Project Layout (Core Parts)

nancy_brain/                    # Main Python package
├── cli.py                      # Command line interface
├── admin_ui.py                 # Streamlit web admin interface
└── __init__.py                 # Package initialization

connectors/http_api/app.py      # FastAPI app
connectors/mcp_server/          # MCP server implementation
rag_core/                       # Core service, search, registry, store, types
scripts/                        # KB build & management scripts
config/repositories.yml         # Source repository list (input KB)
config/weights.yaml             # Extension + path weighting config
config/model_weights.yaml       # (Optional) static per-doc multipliers

3. Configuration

3.1 Repositories (config/repositories.yml)

Structure (categories map to lists of repos):

<category_name>:
  - name: repoA
    url: https://github.com/org/repoA.git
  - name: repoB
    url: https://github.com/org/repoB.git

Categories become path prefixes inside the knowledge base (e.g. cat1/repoA/...).

3.2 Weight Config (config/weights.yaml)

  • extensions: base multipliers by file extension (.py, .md, etc.)
  • path_includes: if substring appears in doc_id, multiplier is applied multiplicatively.

3.3 Model Weights (config/model_weights.yaml)

Optional static per-document multipliers (legacy / seed). Runtime updates via /weight endpoint or MCP set_weight tool override or augment in-memory weights.

3.4 Environment Variables

Common knobs you can export (or place in config/.env) to tune builds and the admin UI:

Var Purpose Default / Typical
KMP_DUPLICATE_LIB_OK Avoid OpenMP clashes on macOS TRUE
USE_DUAL_EMBEDDING Enable dual (text + code) embedding scoring true
CODE_EMBEDDING_MODEL Code embedding model when dual mode enabled microsoft/codebert-base
NB_TEXT_EMBEDDING_MODEL Override text embedding model path sentence-transformers/all-MiniLM-L6-v2
NB_CODE_EMBEDDING_MODEL Override code embedding model path inherits CODE_EMBEDDING_MODEL
SKIP_PDF_PROCESSING Skip PDF downloads/extraction during build false
ANTHROPIC_API_KEY Enable Anthropic summaries (used with --summaries) unset
ENABLE_DOC_SUMMARIES Toggle summaries in builds by default false
NB_SUMMARY_TIMEOUT_SECONDS Per-doc summary timeout 25
NB_PER_FILE_LOG Log each file’s chunk count (diagnostics) false
NB_SKIP_TEST_SEARCH Skip post-build sample queries false
NB_SECRET_KEY JWT signing key for API/UI auth dev key (change in prod)
NB_JWT_ALGORITHM JWT algorithm HS256
NB_ACCESS_EXPIRE_MINUTES Access token lifetime 60
NB_REFRESH_EXPIRE_MINUTES Refresh token lifetime 1440
NB_USERS_DB SQLite users DB path users.db
OMP_NUM_THREADS / MKL_NUM_THREADS / NUMEXPR_MAX_THREADS Cap CPU threading for heavy libs unset
TOKENIZERS_PARALLELISM Suppress HF tokenizer warning false

Tip: First builds download Hugging Face models; set NB_TEXT_EMBEDDING_MODEL to a local path (or run a quick python - <<'PY' … prefetch) if your network is slow.

Creating login users

Nancy Brain’s HTTP API and Streamlit UI expect credentials stored in NB_USERS_DB (default users.db).
Use the CLI to add hashed logins without touching the database directly:

nancy-brain add-new-user <username> <password>

The command bootstraps the auth tables (if they do not exist), hashes the password with passlib, and saves the record in the configured SQLite file.
Point NB_USERS_DB to a shared path before running the command if you need a centralized user store.


4. Building the Knowledge Base

Embeddings must be built before meaningful search.

Using the CLI (Recommended)

# Basic build (repositories only)
nancy-brain build

# Build with PDF articles (if configured)
nancy-brain build --articles-config config/articles.yml

# Force update all repositories
nancy-brain build --force-update

# Or use the web interface
nancy-brain ui  # Go to "Build Knowledge Base" page

Using the Python Script Directly

conda activate nancy-brain
cd src/nancy-brain
# Basic build (repositories only)
python scripts/build_knowledge_base.py \
  --config config/repositories.yml \
  --embeddings-path knowledge_base/embeddings

# Full build including optional PDF articles (if config/articles.yml exists)
python scripts/build_knowledge_base.py \
  --config config/repositories.yml \
  --articles-config config/articles.yml \
  --base-path knowledge_base/raw \
  --embeddings-path knowledge_base/embeddings \
  --force-update \
  --dirty
# You can run without the dirty tag to automatically 
# remove source material after indexing is complete

Run python scripts/build_knowledge_base.py -h for all options.

4.1 PDF Articles (Optional Quick Setup)

  1. Create config/articles.yml (example):
journal_articles:
  - name: Paczynski_1986_ApJ_304_1
    url: https://ui.adsabs.harvard.edu/link_gateway/1986ApJ...304....1P/PUB_PDF
    description: Paczynski (1986) – Gravitational microlensing
  1. Install Java (for Tika PDF extraction) – macOS:
brew install openjdk
export JAVA_HOME="/opt/homebrew/opt/openjdk"
export PATH="$JAVA_HOME/bin:$PATH"
  1. (Optional fallback only) Install lightweight PDF libs if you skip Java:
pip install PyPDF2 pdfplumber
  1. Build with articles (explicit):
python scripts/build_knowledge_base.py --config config/repositories.yml --articles-config config/articles.yml
  1. Keep raw PDFs for inspection: add --dirty.

Notes:

  • If Java/Tika not available, script attempts fallback extraction (needs PyPDF2/pdfplumber or fitz).
  • Cleanups remove raw PDFs unless --dirty supplied.
  • Article docs are indexed under journal_articles/<category>/<name>.

Key flags:

  • --config path to repositories YAML (was --repositories in older docs)
  • --articles-config optional PDF articles YAML
  • --base-path where raw repos/PDFs live (default knowledge_base/raw)
  • --embeddings-path output index directory
  • --force-update re-pull repos / re-download PDFs
  • --category <name> limit to one category
  • --dry-run show actions without performing
  • --dirty keep raw sources (skip cleanup)

This will:

  1. Clone / update listed repos under knowledge_base/raw/<category>/<repo>
  2. (Optionally) download PDFs into category directories
  3. Convert notebooks (*.ipynb -> *.nb.txt) if nb4llm available
  4. Extract and normalize text + (optionally) PDF text
  5. Build / update embeddings index at knowledge_base/embeddings (and code_index if dual embeddings enabled)

Re-run when repositories or articles change.


5. Running Services

Web Admin Interface (Recommended for Getting Started)

nancy-brain ui
# Opens Streamlit interface at http://localhost:8501
# Features: search, repo management, build control, status

HTTP API Server

# Using CLI
nancy-brain serve

# Or directly with uvicorn
uvicorn connectors.http_api.app:app --host 0.0.0.0 --port 8000

MCP Server (for AI Assistants)

# Run MCP stdio server
python run_mcp_server.py

Initialize service programmatically (example pattern):

from pathlib import Path
from connectors.http_api.app import initialize_rag_service
initialize_rag_service(
    config_path=Path('config/repositories.yml'),
    embeddings_path=Path('knowledge_base/embeddings'),
    weights_path=Path('config/weights.yaml'),
    use_dual_embedding=True
)

The FastAPI dependency layer will then serve requests.

Command Line Search

# Quick search from command line
nancy-brain search "machine learning algorithms" --limit 5

# Search with custom paths
nancy-brain search "neural networks" \
  --embeddings-path custom/embeddings \
  --config custom/repositories.yml

5.1 Endpoints (Bearer auth placeholder)

Method Path Description
GET /health Service status
GET /version Index / build meta
GET /search?query=...&limit=N Search documents
POST /retrieve Retrieve passage (doc_id + line range)
POST /retrieve/batch Batch retrieve
GET /tree?prefix=... List KB tree
POST /weight Set runtime doc weight

Example:

curl -H "Authorization: Bearer TEST" 'http://localhost:8000/search?query=light%20curve&limit=5'

Admin UI Authentication

The Streamlit admin UI supports HTTP API authentication (recommended) and a convenience insecure bypass for local development.

  • To use the HTTP API for auth, ensure your API is running and set NB_API_URL if not using the default:
export NB_API_URL="http://localhost:8000"
streamlit run nancy_brain/admin_ui.py
  • For local development without an API, enable an insecure bypass (only use locally):
export NB_ALLOW_INSECURE=true
streamlit run nancy_brain/admin_ui.py

The admin UI stores the access token and refresh token in st.session_state for the current Streamlit session.

Set a document weight (boost factor 0.5–2.0 typical):

curl -X POST -H 'Authorization: Bearer TEST' \
  -H 'Content-Type: application/json' \
  -d '{"doc_id":"cat1/repoA/path/file.py","multiplier":2.0}' \
  http://localhost:8000/weight

6. MCP Server

Run the MCP stdio server:

python run_mcp_server.py

Tools exposed (operation names):

  • search (query, limit)
  • retrieve (doc_id, start, end)
  • retrieve_batch
  • tree (prefix, depth)
  • set_weight (doc_id, multiplier)
  • status / version

6.1 VS Code Integration

  1. Install a Model Context Protocol client extension (e.g. "MCP Explorer" or equivalent).
  2. Add a server entry pointing to the script, stdio transport. Example config snippet:
{
  "mcpServers": {
    "nancy-brain": {
      "command": "python",
      "args": ["/absolute/path/to/src/nancy-brain/run_mcp_server.py"],
      "env": {
        "PYTHONPATH": "/absolute/path/to/src/nancy-brain" 
      }
    }
  }
}

Specific mamba environment example:

{
	"servers": {
		"nancy-brain": {
			"type": "stdio",
			"command": "/Users/malpas.1/.local/share/mamba/envs/nancy-brain/bin/python",
			"args": [
				"/Users/malpas.1/Code/slack-bot/src/nancy-brain/run_mcp_server.py"
			],
			"env": {
				"PYTHONPATH": "/Users/malpas.1/Code/slack-bot/src/nancy-brain",
				"KMP_DUPLICATE_LIB_OK": "TRUE"
			}
		}
	},
	"inputs": []
}
  1. Reload VS Code. The provider should list the tools; invoke search to test.

6.2 Claude Desktop

Claude supports MCP config in its settings file. Add an entry similar to above (command + args). Restart Claude Desktop; tools appear in the prompt tools menu.


7. Use Cases & Examples

For Researchers

# Add astronomy packages
nancy-brain add-repo https://github.com/astropy/astropy.git
nancy-brain add-repo https://github.com/rpoleski/MulensModel.git

# Add key research papers
nancy-brain add-article \
  "https://ui.adsabs.harvard.edu/link_gateway/1986ApJ...304....1P/PUB_PDF" \
  "Paczynski_1986_microlensing" \
  --category "foundational_papers" \
  --description "Paczynski (1986) - Gravitational microlensing by the galactic halo"

nancy-brain build

# AI can now answer: "How do I model a microlensing event?"
nancy-brain search "microlensing model fit"

For ML Engineers

# Add ML frameworks
nancy-brain add-repo https://github.com/scikit-learn/scikit-learn.git
nancy-brain add-repo https://github.com/pytorch/pytorch.git
nancy-brain build

# AI can now answer: "Show me gradient descent implementation"
nancy-brain search "gradient descent optimizer"

For Teams

# Launch web interface for non-technical users
nancy-brain ui
# Point team to http://localhost:8501
# They can search, add repos, manage articles, trigger builds visually
# Repository Management tab: Add GitHub repos
# Articles tab: Add PDF papers and documents

8. Slack Bot (Nancy)

The Slack-facing assistant lives outside this submodule (see parent repository). High-level steps:

  1. Ensure HTTP API running and reachable (or embed service directly in bot process).
  2. Bot receives user message -> constructs query -> calls /search and selected /retrieve for context.
  3. Bot composes answer including source references (doc_id and GitHub URL) before sending back.
  4. Optional: adaptively call /weight when feedback indicates a source should be boosted or dampened.

Check root-level nancy_bot.py or Slack integration docs (SLACK.md) for token setup and event subscription details.


9. Custom GPT (OpenAI Actions / Function Calls)

Define OpenAI tool specs mapping to HTTP endpoints:

  • searchDocuments(query, limit) -> GET /search
  • retrievePassage(doc_id, start, end) -> POST /retrieve
  • listTree(prefix, depth) -> GET /tree
  • setWeight(doc_id, multiplier) -> POST /weight

Use an API gateway or direct URL. Include auth header. Provide JSON schemas matching request/response models.


10. Dynamic Weighting Flow

  1. Base score from embeddings (dual or single).
  2. Extension multiplier (from weights.yaml).
  3. Path multiplier(s) (cumulative).
  4. Model weight (static config + runtime overrides via /weight).
  5. Adjusted score = base * extension_weight * model_weight (and any path multipliers folded into extension weight step).

Runtime /weight takes effect immediately on subsequent searches.


11. Updating / Rebuilding

Action Command
Pull repo updates nancy-brain build --force-update or re-run build script
Change extension weights Edit config/weights.yaml (no restart needed for runtime? restart or rebuild if cached)
Change embedding model Delete / rename existing knowledge_base/embeddings and rebuild with new env vars

12. Deployment Notes

  • Containerize: build image with pre-built embeddings baked or mount a persistent volume.
  • Health probe: /health (returns 200 once rag_service initialized) else 503.
  • Concurrency: FastAPI async safe; weight updates are simple dict writes (low contention). For heavy load consider a lock if races appear.
  • Persistence of runtime weights: currently in-memory; persist manually if needed (extend set_weight).

13. Troubleshooting

Symptom Cause Fix
503 RAG service not initialized initialize_rag_service not called / wrong paths Call initializer with correct embeddings path
Empty search results Embeddings not built / wrong path Re-run nancy-brain build, verify index directory
macOS OpenMP crash MKL / libomp duplicate KMP_DUPLICATE_LIB_OK=TRUE already set early
MCP tools not visible Wrong path or PYTHONPATH Use absolute paths in MCP config
CLI command not found Package not installed pip install nancy-brain

Enable debug logging:

export LOG_LEVEL=DEBUG

(add logic or run with uvicorn --log-level debug)


14. Development & Contributing

# Clone and set up development environment
git clone <repo-url>
cd nancy-brain
pip install -e ."[dev]"

# Run tests
pytest

# Run linting
black nancy_brain/ 
flake8 nancy_brain/

# Test CLI locally
nancy-brain --help

Releasing

Nancy Brain uses automated versioning and PyPI publishing:

# Bump patch version (0.1.0 → 0.1.1)
./release.sh patch

# Bump minor version (0.1.0 → 0.2.0)  
./release.sh minor

# Bump major version (0.1.0 → 1.0.0)
./release.sh major

This automatically:

  1. Updates version numbers in pyproject.toml and nancy_brain/__init__.py
  2. Creates a git commit and tag
  3. Pushes to GitHub, triggering PyPI publication via GitHub Actions

Manual version management:

# See current version and bump options
bump-my-version show-bump

# Dry run (see what would change)
bump-my-version bump --dry-run patch

15. Roadmap (Optional)

  • Persistence layer for runtime weights
  • Additional retrieval filters (e.g. semantic rerank)
  • Auth plugin / token validation
  • VS Code extension
  • Package publishing to PyPI

16. License

See parent repository license.


17. Minimal Verification Script

# After build & run
curl -H 'Authorization: Bearer TEST' 'http://localhost:8000/health'

Expect JSON with status + trace_id.


Happy searching.





GitHub license GitHub issues GitHub releases GitHub status docs status