Skip to content

Commit

Permalink
CUTLASS 2.10 updates (NVIDIA#622)
Browse files Browse the repository at this point in the history
Co-authored-by: Aniket Shivam <ashivam@nvidia.com>
  • Loading branch information
ANIKET-SHIVAM and ANIKET-SHIVAM authored Sep 13, 2022
1 parent beae168 commit e773429
Show file tree
Hide file tree
Showing 96 changed files with 8,351 additions and 1,653 deletions.
20 changes: 14 additions & 6 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,19 @@
# NVIDIA CUTLASS Changelog

## [2.10.0](https://github.com/NVIDIA/cutlass/releases/tag/v2.10.0) (2022-08-23)
* [Grouped convolution targeting implicit GEMM](test/unit/conv/device/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.cu)
* [Depthwise separable convolution](test/unit/conv/device/depthwise_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_simt_f16_sm60.cu)
* Optimizations for CUTLASS's [Grouped GEMM](examples/24_gemm_grouped/gemm_grouped.cu) kernel
* [Grouped GEMM for Multihead Attention](examples/41_multi_head_attention)
* [GEMM + Layer norm fusion for Ampere](examples/37_gemm_layernorm_gemm_fusion/)
* [CUTLASS Python](/examples/40_cutlass_py) now supports GEMM, CONV, Group GEMM for different data types as well as different epilogue flavours.
* Optimizations for CUTLASS's [Grouped GEMM](examples/24_gemm_grouped/gemm_grouped.cu) kernel. Threadblock scheduling part is improved. Some computation can be moved to the host side if applicable. [Grouped Syr2k](examples/38_syr2k_grouped/syr2k_grouped.cu) kernels are added, too.
* Optimizations for [GEMM+Softmax](examples/35_gemm_softmax). All the reduction computation is fused into the previous GEMM. More template arguments are provided to fine tune the performance.
* [Grouped GEMM for Multihead Attention](examples/41_multi_head_attention). This general group gemm based MHA does not require the sequence length of all GEMMs to be the same which makes it most useful for natural language processing.
* [GEMM + Layer norm fusion for Ampere](examples/37_gemm_layernorm_gemm_fusion/) splits the layernorm into two parts and both of them can be fused into the GEMMs before and after separately. In addition to use square sum to compute variance of layernorm, [Shift-K](https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Computing_shifted_data) is provided if square sum raise numerical issues.
* [GEMM Epilogue Permutation Fusion](examples/39_gemm_permute) can apply user provided permutation layout mapping in the GEMM epilogue.
* [Grouped convolution targeting implicit GEMM](test/unit/conv/device/group_conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.cu) introduces the first group convolution implementation to CUTLASS. It is an Analytical implementation, not an Optimized. The restrictions are: 1) input and output channel number should be multiple of group number. 2) split-K is not supported. The implementation has 2 modes:
* kSingleGroup: output channel per group is multiple of Threadblock tile N.
* kMultipleGroup: Threadblock tile N is multiple of output channel per group.
* [Depthwise separable convolution](test/unit/conv/device/depthwise_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_simt_f16_sm60.cu) introduces the first depthwise convolution which is also Analytical for now. The restrictions are: 1) SIMT only 2) No split-K 3) input channel equals to output channel equals to group number.
* Standalone [Layernorm](/tools/util/include/cutlass/util/device_layernorm.h) and [Pooling](/tools/util/include/cutlass/util/device_nhwc_pooling.h) kernels.
* [Back-to-back GEMM/CONV](examples/13_two_tensor_op_fusion) relaxes the requirement that the first GEMM K dimension needs to be the multiple of Threadblock Tile K dimension.
* Optimal performance using [**CUDA 11.6u2**](https://developer.nvidia.com/cuda-downloads)
* Updates and bugfixes from the community (thanks!)

* **Deprecation announcement:** CUTLASS plans to deprecate the following:
Expand Down Expand Up @@ -47,7 +55,7 @@
* New elementwise fusion pattern for [residual block](/include/cutlass/epilogue/thread/linear_combination_residual_block.h).
* [Group GEMM](/examples/24_gemm_grouped) thread block number calculation fix which helps to launch the intended number of threadblocks to fully occupy the GPUs.
* [Parallel GEMM splitk](https://github.com/NVIDIA/cutlass/pull/277) support in the CUTLASS profiler.
* Optimal performance using [**CUDA 11.7**](https://developer.nvidia.com/cuda-downloads)
* Optimal performance using [**CUDA 11.6u2**](https://developer.nvidia.com/cuda-downloads)
* Updates and bugfixes from the community (thanks!)


Expand Down
15 changes: 10 additions & 5 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -39,11 +39,16 @@ supported at each level of the execution model hierarchy.
# What's New in CUTLASS 2.10

CUTLASS 2.10 is an update to CUTLASS adding:
- [Grouped convolution targeting implicit GEMM](test/unit/conv/device/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.cu)
- [Depthwise separable convolution](test/unit/conv/device/depthwise_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_simt_f16_sm60.cu)
- Optimizations for CUTLASS's [Grouped GEMM](examples/24_gemm_grouped/gemm_grouped.cu) kernel
- [Grouped GEMM for Multihead Attention](examples/41_multi_head_attention)
- [GEMM + Layer norm fusion for Ampere](examples/37_gemm_layernorm_gemm_fusion/)
- [CUTLASS Python](/examples/40_cutlass_py) now supports GEMM, CONV, Group GEMM for different data types as well as different epilogue flavours.
- Optimizations for CUTLASS's [Grouped GEMM](examples/24_gemm_grouped/gemm_grouped.cu) kernel. It can move some scheduling into the host side if applicable.
- Optimizations for [GEMM+Softmax](examples/35_gemm_softmax).
- [Grouped GEMM for Multihead Attention](examples/41_multi_head_attention) is a general MHA that does not require equal sequence length in every GEMM.
- [GEMM + Layer norm fusion for Ampere](examples/37_gemm_layernorm_gemm_fusion/) can fuse the layernorm into GEMMs before and after.
- [GEMM Epilogue Permutation Fusion](examples/39_gemm_permute) can permute the GEMM output before storing.
- [Grouped convolution targeting implicit GEMM](test/unit/conv/device/group_conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.cu) introduces the first group convolution implementation to CUTLASS. It is an Analytical implementation, not an Optimized.
- [Depthwise separable convolution](test/unit/conv/device/depthwise_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_simt_f16_sm60.cu) introduces the first depthwise convolution which is also Analytical for now.
- Standalone [Layernorm](/tools/util/include/cutlass/util/device_layernorm.h) and [Pooling](/tools/util/include/cutlass/util/device_nhwc_pooling.h) kernels.
- [Back-to-back GEMM](examples/13_two_tensor_op_fusion) enhancements.
- Updates and bugfixes from the community (thanks!)
- **Deprecation announcement:** CUTLASS plans to deprecate the following:
- Maxwell and Pascal GPU architectures
Expand Down
3 changes: 3 additions & 0 deletions examples/24_gemm_grouped/gemm_grouped.cu
Original file line number Diff line number Diff line change
Expand Up @@ -1528,6 +1528,9 @@ int main(int argc, char const **args) {
cutlass::epilogue::thread::LinearCombination<
ElementOutput, 128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator, ElementAccumulator>,
// NOTE: Threadblock swizzling is currently not supported by CUTLASS's grouped kernels.
// This parameter is passed in at present to match the APIs of other kernels. The parameter
// is unused within the kernel.
cutlass::gemm::threadblock::GemmBatchedIdentityThreadblockSwizzle,
4>::GemmKernel;

Expand Down
6 changes: 3 additions & 3 deletions examples/36_gather_scatter_fusion/gather_scatter_fusion.cu
Original file line number Diff line number Diff line change
Expand Up @@ -187,8 +187,8 @@ struct Options {
// elements in input matrices.
using ElementAccumulator = float; // <- data type of accumulator
using ElementComputeEpilogue = ElementAccumulator; // <- data type of epilogue operations
using ElementInputA = cutlass::half_t;; // <- data type of elements in input matrix A
using ElementInputB = cutlass::half_t;; // <- data type of elements in input matrix B
using ElementInputA = cutlass::half_t; // <- data type of elements in input matrix A
using ElementInputB = cutlass::half_t; // <- data type of elements in input matrix B
using ElementOutput = float; // <- data type of elements in output matrix D

// The code section below describes matrix layout of input and output matrices.
Expand Down Expand Up @@ -252,7 +252,7 @@ using Gemm = cutlass::gemm::device::GemmUniversal<ElementInputA,
SwizzleThreadBlock,
NumStages,
8, /*alignmentA*/
8, /*alignmengB*/
8, /*alignmentB*/
cutlass::arch::OpMultiplyAdd,
cutlass::ComplexTransform::kNone,
cutlass::ComplexTransform::kNone,
Expand Down
5 changes: 5 additions & 0 deletions examples/38_syr2k_grouped/syr2k_grouped.cu
Original file line number Diff line number Diff line change
Expand Up @@ -1366,7 +1366,12 @@ int main(int argc, char const **args) {
using EpilogueOutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput, 1,
ElementAccumulator, ElementAccumulator>;

// NOTE: Threadblock swizzling is currently not supported by CUTLASS's grouped kernels.
// This parameter is passed in at present to match the APIs of other kernels. The parameter
// is unused within the kernel.
using ThreadblockSwizzle = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>;

const int kStages = 4;
const bool kSplitKSerial = false;
using Operator = cutlass::arch::OpMultiplyAdd;
Expand Down
76 changes: 72 additions & 4 deletions examples/40_cutlass_py/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -92,25 +92,35 @@ Example 1: SM80_Device_Gemm_s8n_s8t_s8n_tensor_op_s32_256x128x128_64x64x128
```python
python gemm.py -i 16 8 32 -ta int8 -tb int8 -tc int8 -tacc int32 -m multiply_add -op TensorOp -b 128 128 128 -s 3 -w 2 2 1 -cc 80 -la RowMajor -aa 16 -lb ColumnMajor -ab 16 -lc RowMajor -ac 16 -te float32 -ep FastLinearCombinationClamp -sw IdentitySwizzle2 -p 512 512 512 -alpha 1.0 -beta 0.0 -gm Gemm -k 1
```

### Batched & Array GEMM
Example 1: Batched GEMM
```python
python gemm.py -i 16 8 8 -ta float32 -tb float32 -tc float32 -tacc float32 -m multiply_add_fast_bf16 -op TensorOp -b 128 128 32 -s 3 -w 2 2 1 -cc 80 -la RowMajor -aa 4 -lb ColumnMajor -ab 4 -lc RowMajor -ac 4 -te float32 -ep LinearCombination -sw BatchedIdentitySwizzle -p 512 256 128 -alpha 1.0 -beta 0.5 -gm Batched -k 1 -batch 3
```
Example 2: Array GEMM
```python
python gemm.py -i 16 8 16 -ta float16 -tb float16 -tc float32 -tacc float32 -m multiply_add -op TensorOp -b 128 128 32 -s 3 -w 2 2 1 -cc 80 -la ColumnMajor -aa 8 -lb RowMajor -ab 8 -lc ColumnMajor -ac 4 -te float32 -ep LinearCombination -sw IdentitySwizzle4 -p 512 256 128 -alpha 1.0 -beta 0.5 -gm Array -k 1 -batch 2
```
***
## GEMM Grouped Examples
The GEMM Grouped examples use numpy to create input tensors and verify the results.

Example 1: SM80_Device_GemmGrouped_f16t_f16t_f32t_tensor_op_f32_128x128x32_64x64x32, device schedule
```python
python gemm_grouped.py -i 16 8 16 -ta float16 -tb float16 -tc float32 -tacc float32 -m multiply_add -op TensorOp -b 128 128 32 -s 3 -w 2 2 1 -cc 80 -la ColumnMajor -aa 8 -lb ColumnMajor -ab 8 -lc ColumnMajor -ac 4 -te float32 -ep LinearCombination -sw IdentitySwizzle1 -p ./grouped_gemm_problem_size.csv -alpha 1.0 -beta 0.0 -pm Device
python gemm_grouped.py -i 16 8 16 -ta float16 -tb float16 -tc float32 -tacc float32 -m multiply_add -op TensorOp -b 128 128 32 -s 3 -w 2 2 1 -cc 80 -la ColumnMajor -aa 8 -lb ColumnMajor -ab 8 -lc ColumnMajor -ac 4 -te float32 -ep LinearCombination -p ./grouped_gemm_problem_size.csv -alpha 1.0 -beta 0.0 -pm Device
```
Example 2: SM80_Device_GemmGrouped_f64n_f64n_f64t_tensor_op_f64_64x64x16_32x32x16, host schedule
```python
python gemm_grouped.py -i 8 8 4 -ta float64 -tb float64 -tc float64 -tacc float64 -m multiply_add -op TensorOp -b 64 64 16 -s 4 -w 2 2 1 -cc 80 -la RowMajor -aa 1 -lb RowMajor -ab 1 -lc ColumnMajor -ac 1 -te float64 -ep LinearCombination -sw IdentitySwizzle2 -p ./grouped_gemm_problem_size.csv -alpha 1.0 -beta 1.0 -pm Host
python gemm_grouped.py -i 8 8 4 -ta float64 -tb float64 -tc float64 -tacc float64 -m multiply_add -op TensorOp -b 64 64 16 -s 4 -w 2 2 1 -cc 80 -la RowMajor -aa 1 -lb RowMajor -ab 1 -lc ColumnMajor -ac 1 -te float64 -ep LinearCombination -p ./grouped_gemm_problem_size.csv -alpha 1.0 -beta 1.0 -pm Host
```
Example 3: SM80_Device_GemmGrouped_f32n_f32n_f32n_simt_f32_128x64x8_64x32x1, device schedule
```python
python gemm_grouped.py -i 1 1 1 -ta float32 -tb float32 -tc float32 -tacc float32 -m multiply_add -op Simt -b 128 64 8 -s 4 -w 2 2 1 -cc 80 -la RowMajor -aa 1 -lb RowMajor -ab 1 -lc RowMajor -ac 1 -te float32 -ep LinearCombination -sw IdentitySwizzle4 -p ./grouped_gemm_problem_size.csv -alpha 2.0 -beta 1.0 -pm Device
python gemm_grouped.py -i 1 1 1 -ta float32 -tb float32 -tc float32 -tacc float32 -m multiply_add -op Simt -b 128 64 8 -s 4 -w 2 2 1 -cc 80 -la RowMajor -aa 1 -lb RowMajor -ab 1 -lc RowMajor -ac 1 -te float32 -ep LinearCombination -p ./grouped_gemm_problem_size.csv -alpha 2.0 -beta 1.0 -pm Device
```
Example 4: SM80_Device_GemmGrouped_f16t_f16t_f32t_tensor_op_f32_128x128x32_64x64x32, device schedule
```python
python gemm_grouped.py -i 16 8 16 -ta float16 -tb float16 -tc float32 -tacc float32 -m multiply_add -op TensorOp -b 128 128 32 -s 3 -w 2 2 1 -cc 80 -la ColumnMajor -aa 8 -lb ColumnMajor -ab 8 -lc ColumnMajor -ac 4 -te float32 -ep LinearCombination -sw IdentitySwizzle8 -p ./grouped_gemm_problem_size.csv -alpha 2.0 -beta 1.0 -pm Device
python gemm_grouped.py -i 16 8 16 -ta float16 -tb float16 -tc float32 -tacc float32 -m multiply_add -op TensorOp -b 128 128 32 -s 3 -w 2 2 1 -cc 80 -la ColumnMajor -aa 8 -lb ColumnMajor -ab 8 -lc ColumnMajor -ac 4 -te float32 -ep LinearCombination -p ./grouped_gemm_problem_size.csv -alpha 2.0 -beta 1.0 -pm Device
```
***
## Conv2d Example
Expand Down Expand Up @@ -160,3 +170,61 @@ Example 4: SM80_Device_Conv2d_Strided_Dgrad_Optimized_ImplicitGemm_f16nhwc_f16nh
```python
python conv2d.py -i 16 8 16 -ta float16 -tb float16 -tc float16 -tacc float32 -m multiply_add -op TensorOp -b 128 128 32 -s 3 -w 2 2 1 -cc 80 -la TensorNHWC -aa 4 -lb TensorNHWC -ab 4 -lc TensorNHWC -ac 4 -te float32 -ep LinearCombination -sw StridedDgradIdentitySwizzle1 -co dgrad -st Strided -ia optimized -sm Serial -k 1 -nhwc 1 56 56 12 -krsc 8 1 1 12 -pad 0 0 0 0 -stride 2 2 -dilation 1 1 -alpha 1.0 -beta 0.0
```

## Epilogue
### Bias
To replace C with a bias vector, add `-bias` flag.
### Activation function
Example 1: ReLU
```python
python gemm.py -i 8 8 4 -ta float64 -tb float64 -tc float64 -tacc float64 -m multiply_add -op TensorOp -b 32 32 16 -s 4 -w 2 2 1 -cc 80 -la ColumnMajor -aa 1 -lb RowMajor -ab 1 -lc RowMajor -ac 1 -te float64 -ep LinearCombination -sw IdentitySwizzle1 -p 512 256 128 -alpha 1.0 -beta 0.5 -gm Gemm -k 1 -bias -activ relu
```
Example 2: leaky ReLU
```python
python gemm.py -i 8 8 4 -ta float64 -tb float64 -tc float64 -tacc float64 -m multiply_add -op TensorOp -b 64 64 16 -s 4 -w 2 2 1 -cc 80 -la RowMajor -aa 1 -lb ColumnMajor -ab 1 -lc RowMajor -ac 1 -te float64 -ep LinearCombination -sw IdentitySwizzle1 -p 512 256 128 -alpha 1.0 -beta 0.5 -gm Gemm -k 2 -bias -activ leaky_relu -activ_arg 0.2
```
Example 3: tanh (alpha=0 to avoid saturation)
```python
python gemm.py -i 16 8 8 -ta float32 -tb float32 -tc float32 -tacc float32 -m multiply_add -op TensorOp -b 128 128 32 -s 3 -w 2 2 1 -cc 80 -la ColumnMajor -aa 4 -lb ColumnMajor -ab 4 -lc RowMajor -ac 4 -te float32 -ep LinearCombination -sw IdentitySwizzle1 -p 512 256 128 -alpha 1.0 -beta 0.5 -gm GemmSplitKParallel -k 2 -bias -activ tanh
```
Example 4: sigmoid
```python
python gemm_grouped.py -i 8 8 4 -ta float64 -tb float64 -tc float64 -tacc float64 -m multiply_add -op TensorOp -b 64 64 16 -s 4 -w 2 2 1 -cc 80 -la RowMajor -aa 1 -lb RowMajor -ab 1 -lc ColumnMajor -ac 1 -te float64 -ep LinearCombination -p ./grouped_gemm_problem_size.csv -alpha 0.0 -beta 0.5 -pm Host -bias -activ sigmoid -bias -activ sigmoid
```
Example 5: SiLU
```python
python conv2d.py -i 16 8 8 -ta float32 -tb float32 -tc float32 -tacc float32 -m multiply_add -op TensorOp -b 128 128 16 -s 3 -w 2 2 1 -cc 80 -la TensorNHWC -aa 2 -lb TensorNHWC -ab 2 -lc TensorNHWC -ac 2 -te float32 -ep LinearCombination -sw IdentitySwizzle2 -co fprop -st Strided -ia optimized -sm Serial -k 2 -nhwc 1 4 4 12 -krsc 8 3 3 12 -pad 0 0 0 0 -stride 3 3 -dilation 1 1 -alpha 0.0 -beta 0.5 -bias -activ silu
```
Example 6: HardSwish
```python
python conv2d.py -i 16 8 16 -ta float16 -tb float16 -tc float16 -tacc float32 -m multiply_add -op TensorOp -b 128 128 64 -s 3 -w 2 2 1 -cc 80 -la TensorNHWC -aa 2 -lb TensorNHWC -ab 2 -lc TensorNHWC -ac 8 -te float32 -ep LinearCombination -sw IdentitySwizzle1 -co fprop -st Strided -ia few_channels -sm Serial -k 1 -nhwc 1 16 16 2 -krsc 16 3 3 2 -pad 1 1 1 1 -stride 2 2 -dilation 1 1 -alpha 0.0 -beta 0.5 -bias -activ hardswish
```
Example 7: GELU
```python
python gemm.py -i 16 8 16 -ta bfloat16 -tb bfloat16 -tc float32 -tacc float32 -m multiply_add -op TensorOp -b 64 128 64 -s 3 -w 2 2 1 -cc 80 -la ColumnMajor -aa 8 -lb ColumnMajor -ab 8 -lc RowMajor -ac 4 -te float32 -ep LinearCombination -sw IdentitySwizzle2 -p 512 256 128 -alpha 0.0 -beta 0.5 -gm GemmSplitKParallel -k 5 -bias -activ gelu
```
### Epilogue Visitor Tree
Example 1:
```python
python gemm.py -i 16 8 8 -ta float32 -tb float32 -tc float32 -tacc float32 -m multiply_add_fast_bf16 -op TensorOp -b 128 128 32 -s 3 -w 2 2 1 -cc 80 -la RowMajor -aa 4 -lb ColumnMajor -ab 4 -lc RowMajor -ac 4 -te float32 -ep LinearCombination -epv RowBroadcast -sw IdentitySwizzle1 -p 512 256 128 -alpha 1.0 -beta 0.5 -gm Gemm -k 1
```
Example 2:
```python
python gemm.py -i 8 8 4 -ta float64 -tb float64 -tc float64 -tacc float64 -m multiply_add -op TensorOp -b 32 32 16 -s 4 -w 2 2 1 -cc 80 -la ColumnMajor -aa 1 -lb RowMajor -ab 1 -lc RowMajor -ac 1 -te float64 -ep LinearCombination -epv ColumnBroadcast -sw IdentitySwizzle1 -p 512 256 128 -alpha 1.0 -beta 0.5 -gm Gemm -k 1
```
Example 3:
```python
python gemm.py -i 16 8 16 -ta float16 -tb float16 -tc float32 -tacc float32 -m multiply_add -op TensorOp -b 128 128 32 -s 3 -w 2 2 1 -cc 80 -la ColumnMajor -aa 8 -lb RowMajor -ab 8 -lc RowMajor -ac 4 -te float32 -ep LinearCombination -epv RowReduction -sw IdentitySwizzle4 -p 512 256 128 -alpha 1.0 -beta 0.5 -gm Gemm -k 1
```
Example 4:
```python
python gemm.py -i 16 8 16 -ta bfloat16 -tb bfloat16 -tc float32 -tacc float32 -m multiply_add -op TensorOp -b 64 128 64 -s 3 -w 2 2 1 -cc 80 -la ColumnMajor -aa 8 -lb ColumnMajor -ab 8 -lc RowMajor -ac 4 -te float32 -ep LinearCombination -epv ColumnReduction -sw IdentitySwizzle2 -p 512 256 128 -alpha 1.0 -beta 0.5 -gm Gemm -k 1
```
Example 5:
```python
python gemm.py -i 16 8 8 -ta float32 -tb float32 -tc float32 -tacc float32 -m multiply_add_fast_bf16 -op TensorOp -b 128 128 32 -s 3 -w 2 2 1 -cc 80 -la RowMajor -aa 4 -lb ColumnMajor -ab 4 -lc RowMajor -ac 4 -te float32 -ep LinearCombination -epv RowReduction -sw BatchedIdentitySwizzle -p 512 256 128 -alpha 1.0 -beta 0.5 -gm Batched -k 1 -batch 3
```
Example 6:
```python
python gemm.py -i 16 8 8 -ta float32 -tb float32 -tc float32 -tacc float32 -m multiply_add_fast_bf16 -op TensorOp -b 128 128 32 -s 3 -w 2 2 1 -cc 80 -la RowMajor -aa 4 -lb ColumnMajor -ab 4 -lc RowMajor -ac 4 -te float32 -ep LinearCombination -epv ColumnBroadcast -sw BatchedIdentitySwizzle -p 512 256 128 -alpha 1.0 -beta 0.5 -gm Array -k 1 -batch 3
```
Loading

0 comments on commit e773429

Please sign in to comment.