Skip to content

Commit

Permalink
Update 'main' post-24.03 (triton-inference-server#851)
Browse files Browse the repository at this point in the history
* Update 'main' to track development for 1.39.0 / 24.04

* Update README and versions for 1.38.0 / 24.03 (triton-inference-server#834)

---------

Co-authored-by: Kyle McGill <101670481+nv-kmcgill53@users.noreply.github.com>
  • Loading branch information
mc-nv and nv-kmcgill53 authored Apr 1, 2024
1 parent 7e6c7fc commit 792f2a4
Show file tree
Hide file tree
Showing 11 changed files with 17 additions and 18 deletions.
5 changes: 2 additions & 3 deletions Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -12,12 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.

ARG BASE_IMAGE=nvcr.io/nvidia/tritonserver:24.02-py3
ARG TRITONSDK_BASE_IMAGE=nvcr.io/nvidia/tritonserver:24.02-py3-sdk
ARG BASE_IMAGE=nvcr.io/nvidia/tritonserver:24.03-py3
ARG TRITONSDK_BASE_IMAGE=nvcr.io/nvidia/tritonserver:24.03-py3-sdk

ARG MODEL_ANALYZER_VERSION=1.39.0dev
ARG MODEL_ANALYZER_CONTAINER_VERSION=24.04dev

FROM ${TRITONSDK_BASE_IMAGE} as sdk

FROM $BASE_IMAGE
Expand Down
4 changes: 2 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,8 +21,8 @@ limitations under the License.
> [!Warning]
> ##### LATEST RELEASE
> You are currently on the `main` branch which tracks under-development progress towards the next release. <br>
> The latest release of the Triton Model Analyzer is 1.37.0 and is available on branch
> [r24.02](https://github.com/triton-inference-server/model_analyzer/tree/r24.02).
> The latest release of the Triton Model Analyzer is 1.38.0 and is available on branch
> [r24.03](https://github.com/triton-inference-server/model_analyzer/tree/r24.03).

Triton Model Analyzer is a CLI tool which can help you find a more optimal configuration, on a given piece of hardware, for single, multiple, ensemble, or BLS models running on a [Triton Inference Server](https://github.com/triton-inference-server/server/). Model Analyzer will also generate reports to help you better understand the trade-offs of the different configurations along with their compute and memory requirements.
Expand Down
2 changes: 1 addition & 1 deletion VERSION
Original file line number Diff line number Diff line change
@@ -1 +1 @@
1.39.0dev
1.39.0dev
4 changes: 2 additions & 2 deletions docs/bls_quick_start.md
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ git pull origin main
**1. Pull the SDK container:**

```
docker pull nvcr.io/nvidia/tritonserver:24.02-py3-sdk
docker pull nvcr.io/nvidia/tritonserver:24.03-py3-sdk
```

**2. Run the SDK container**
Expand All @@ -59,7 +59,7 @@ docker run -it --gpus 1 \
--shm-size 2G \
-v /var/run/docker.sock:/var/run/docker.sock \
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
--net=host nvcr.io/nvidia/tritonserver:24.02-py3-sdk
--net=host nvcr.io/nvidia/tritonserver:24.03-py3-sdk
```

**Important:** The example above uses a single GPU. If you are running on multiple GPUs, you may need to increase the shared memory size accordingly<br><br>
Expand Down
2 changes: 1 addition & 1 deletion docs/config.md
Original file line number Diff line number Diff line change
Expand Up @@ -153,7 +153,7 @@ cpu_only_composing_models: <comma-delimited-string-list>
[ reload_model_disable: <bool> | default: false]
# Triton Docker image tag used when launching using Docker mode
[ triton_docker_image: <string> | default: nvcr.io/nvidia/tritonserver:24.02-py3 ]
[ triton_docker_image: <string> | default: nvcr.io/nvidia/tritonserver:24.03-py3 ]
# Triton Server HTTP endpoint url used by Model Analyzer client"
[ triton_http_endpoint: <string> | default: localhost:8000 ]
Expand Down
4 changes: 2 additions & 2 deletions docs/ensemble_quick_start.md
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ mkdir examples/quick/ensemble_add_sub/1
**1. Pull the SDK container:**

```
docker pull nvcr.io/nvidia/tritonserver:24.02-py3-sdk
docker pull nvcr.io/nvidia/tritonserver:24.03-py3-sdk
```

**2. Run the SDK container**
Expand All @@ -65,7 +65,7 @@ docker run -it --gpus 1 \
--shm-size 1G \
-v /var/run/docker.sock:/var/run/docker.sock \
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
--net=host nvcr.io/nvidia/tritonserver:24.02-py3-sdk
--net=host nvcr.io/nvidia/tritonserver:24.03-py3-sdk
```

**Important:** The example above uses a single GPU. If you are running on multiple GPUs, you may need to increase the shared memory size accordingly<br><br>
Expand Down
2 changes: 1 addition & 1 deletion docs/kubernetes_deploy.md
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,7 @@ images:
triton:
image: nvcr.io/nvidia/tritonserver
tag: 24.02-py3
tag: 24.03-py3
```

The model analyzer executable uses the config file defined in `helm-chart/templates/config-map.yaml`. This config can be modified to supply arguments to model analyzer. Only the content under the `config.yaml` section of the file should be modified.
Expand Down
4 changes: 2 additions & 2 deletions docs/mm_quick_start.md
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ git pull origin main
**1. Pull the SDK container:**

```
docker pull nvcr.io/nvidia/tritonserver:24.02-py3-sdk
docker pull nvcr.io/nvidia/tritonserver:24.03-py3-sdk
```

**2. Run the SDK container**
Expand All @@ -58,7 +58,7 @@ docker pull nvcr.io/nvidia/tritonserver:24.02-py3-sdk
docker run -it --gpus all \
-v /var/run/docker.sock:/var/run/docker.sock \
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
--net=host nvcr.io/nvidia/tritonserver:24.02-py3-sdk
--net=host nvcr.io/nvidia/tritonserver:24.03-py3-sdk
```

## `Step 3:` Profile both models concurrently
Expand Down
4 changes: 2 additions & 2 deletions docs/quick_start.md
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ git pull origin main
**1. Pull the SDK container:**

```
docker pull nvcr.io/nvidia/tritonserver:24.02-py3-sdk
docker pull nvcr.io/nvidia/tritonserver:24.03-py3-sdk
```

**2. Run the SDK container**
Expand All @@ -58,7 +58,7 @@ docker pull nvcr.io/nvidia/tritonserver:24.02-py3-sdk
docker run -it --gpus all \
-v /var/run/docker.sock:/var/run/docker.sock \
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
--net=host nvcr.io/nvidia/tritonserver:24.02-py3-sdk
--net=host nvcr.io/nvidia/tritonserver:24.03-py3-sdk
```

## `Step 3:` Profile the `add_sub` model
Expand Down
2 changes: 1 addition & 1 deletion helm-chart/values.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -41,4 +41,4 @@ images:

triton:
image: nvcr.io/nvidia/tritonserver
tag: 24.02-py3
tag: 24.03-py3
2 changes: 1 addition & 1 deletion model_analyzer/config/input/config_defaults.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@
DEFAULT_RUN_CONFIG_PROFILE_MODELS_CONCURRENTLY_ENABLE = False
DEFAULT_REQUEST_RATE_SEARCH_ENABLE = False
DEFAULT_TRITON_LAUNCH_MODE = "local"
DEFAULT_TRITON_DOCKER_IMAGE = "nvcr.io/nvidia/tritonserver:24.02-py3"
DEFAULT_TRITON_DOCKER_IMAGE = "nvcr.io/nvidia/tritonserver:24.03-py3"
DEFAULT_TRITON_HTTP_ENDPOINT = "localhost:8000"
DEFAULT_TRITON_GRPC_ENDPOINT = "localhost:8001"
DEFAULT_TRITON_METRICS_URL = "http://localhost:8002/metrics"
Expand Down

0 comments on commit 792f2a4

Please sign in to comment.