Skip to content

Commit

Permalink
Update main post-23.12 release (triton-inference-server#803)
Browse files Browse the repository at this point in the history
* Update README and versions for 23.12 branch (triton-inference-server#796)

* Update README and versions for 23.12 branch

* Address review comments

* Update notification bunner on README.md

* fix Typo

---------

Co-authored-by: Tanmay Verma <tanmay2592@gmail.com>
  • Loading branch information
mc-nv and tanmayv25 authored Dec 26, 2023
1 parent 749e171 commit 65bc1ab
Show file tree
Hide file tree
Showing 10 changed files with 20 additions and 20 deletions.
4 changes: 2 additions & 2 deletions Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -12,8 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.

ARG BASE_IMAGE=nvcr.io/nvidia/tritonserver:23.11-py3
ARG TRITONSDK_BASE_IMAGE=nvcr.io/nvidia/tritonserver:23.11-py3-sdk
ARG BASE_IMAGE=nvcr.io/nvidia/tritonserver:23.12-py3
ARG TRITONSDK_BASE_IMAGE=nvcr.io/nvidia/tritonserver:23.12-py3-sdk

ARG MODEL_ANALYZER_VERSION=1.36.0dev
ARG MODEL_ANALYZER_CONTAINER_VERSION=24.01dev
Expand Down
12 changes: 6 additions & 6 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,12 +18,12 @@ limitations under the License.

# Triton Model Analyzer

>**LATEST RELEASE:**<br>
You are currently on the `main` branch which tracks
under-development progress towards the next release. <br>The latest
release of the Triton Model Analyzer is 1.32.0 and is available on
branch
[r23.11](https://github.com/triton-inference-server/model_analyzer/tree/r23.11).
> [!Warning]
> ##### LATEST RELEASE
> You are currently on the `main` branch which tracks under-development progress towards the next release. <br>
> The latest release of the Triton Model Analyzer is 1.35.0 and is available on branch
> [r23.12](https://github.com/triton-inference-server/model_analyzer/tree/r23.12).

Triton Model Analyzer is a CLI tool which can help you find a more optimal configuration, on a given piece of hardware, for single, multiple, ensemble, or BLS models running on a [Triton Inference Server](https://github.com/triton-inference-server/server/). Model Analyzer will also generate reports to help you better understand the trade-offs of the different configurations along with their compute and memory requirements.
<br><br>
Expand Down
4 changes: 2 additions & 2 deletions docs/bls_quick_start.md
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ git pull origin main
**1. Pull the SDK container:**

```
docker pull nvcr.io/nvidia/tritonserver:23.11-py3-sdk
docker pull nvcr.io/nvidia/tritonserver:23.12-py3-sdk
```

**2. Run the SDK container**
Expand All @@ -59,7 +59,7 @@ docker run -it --gpus 1 \
--shm-size 2G \
-v /var/run/docker.sock:/var/run/docker.sock \
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
--net=host nvcr.io/nvidia/tritonserver:23.11-py3-sdk
--net=host nvcr.io/nvidia/tritonserver:23.12-py3-sdk
```

**Important:** The example above uses a single GPU. If you are running on multiple GPUs, you may need to increase the shared memory size accordingly<br><br>
Expand Down
2 changes: 1 addition & 1 deletion docs/config.md
Original file line number Diff line number Diff line change
Expand Up @@ -153,7 +153,7 @@ cpu_only_composing_models: <comma-delimited-string-list>
[ reload_model_disable: <bool> | default: false]
# Triton Docker image tag used when launching using Docker mode
[ triton_docker_image: <string> | default: nvcr.io/nvidia/tritonserver:23.11-py3 ]
[ triton_docker_image: <string> | default: nvcr.io/nvidia/tritonserver:23.12-py3 ]
# Triton Server HTTP endpoint url used by Model Analyzer client"
[ triton_http_endpoint: <string> | default: localhost:8000 ]
Expand Down
4 changes: 2 additions & 2 deletions docs/ensemble_quick_start.md
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ mkdir examples/quick/ensemble_add_sub/1
**1. Pull the SDK container:**

```
docker pull nvcr.io/nvidia/tritonserver:23.11-py3-sdk
docker pull nvcr.io/nvidia/tritonserver:23.12-py3-sdk
```

**2. Run the SDK container**
Expand All @@ -65,7 +65,7 @@ docker run -it --gpus 1 \
--shm-size 1G \
-v /var/run/docker.sock:/var/run/docker.sock \
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
--net=host nvcr.io/nvidia/tritonserver:23.11-py3-sdk
--net=host nvcr.io/nvidia/tritonserver:23.12-py3-sdk
```

**Important:** The example above uses a single GPU. If you are running on multiple GPUs, you may need to increase the shared memory size accordingly<br><br>
Expand Down
2 changes: 1 addition & 1 deletion docs/kubernetes_deploy.md
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,7 @@ images:
triton:
image: nvcr.io/nvidia/tritonserver
tag: 23.11-py3
tag: 23.12-py3
```

The model analyzer executable uses the config file defined in `helm-chart/templates/config-map.yaml`. This config can be modified to supply arguments to model analyzer. Only the content under the `config.yaml` section of the file should be modified.
Expand Down
4 changes: 2 additions & 2 deletions docs/mm_quick_start.md
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ git pull origin main
**1. Pull the SDK container:**

```
docker pull nvcr.io/nvidia/tritonserver:23.11-py3-sdk
docker pull nvcr.io/nvidia/tritonserver:23.12-py3-sdk
```

**2. Run the SDK container**
Expand All @@ -58,7 +58,7 @@ docker pull nvcr.io/nvidia/tritonserver:23.11-py3-sdk
docker run -it --gpus all \
-v /var/run/docker.sock:/var/run/docker.sock \
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
--net=host nvcr.io/nvidia/tritonserver:23.11-py3-sdk
--net=host nvcr.io/nvidia/tritonserver:23.12-py3-sdk
```

## `Step 3:` Profile both models concurrently
Expand Down
4 changes: 2 additions & 2 deletions docs/quick_start.md
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ git pull origin main
**1. Pull the SDK container:**

```
docker pull nvcr.io/nvidia/tritonserver:23.11-py3-sdk
docker pull nvcr.io/nvidia/tritonserver:23.12-py3-sdk
```

**2. Run the SDK container**
Expand All @@ -58,7 +58,7 @@ docker pull nvcr.io/nvidia/tritonserver:23.11-py3-sdk
docker run -it --gpus all \
-v /var/run/docker.sock:/var/run/docker.sock \
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
--net=host nvcr.io/nvidia/tritonserver:23.11-py3-sdk
--net=host nvcr.io/nvidia/tritonserver:23.12-py3-sdk
```

## `Step 3:` Profile the `add_sub` model
Expand Down
2 changes: 1 addition & 1 deletion helm-chart/values.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -41,4 +41,4 @@ images:

triton:
image: nvcr.io/nvidia/tritonserver
tag: 23.11-py3
tag: 23.12-py3
2 changes: 1 addition & 1 deletion model_analyzer/config/input/config_defaults.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,7 @@
DEFAULT_REQUEST_RATE_SEARCH_ENABLE = False
DEFAULT_LLM_SEARCH_ENABLE = False
DEFAULT_TRITON_LAUNCH_MODE = "local"
DEFAULT_TRITON_DOCKER_IMAGE = "nvcr.io/nvidia/tritonserver:23.11-py3"
DEFAULT_TRITON_DOCKER_IMAGE = "nvcr.io/nvidia/tritonserver:23.12-py3"
DEFAULT_TRITON_HTTP_ENDPOINT = "localhost:8000"
DEFAULT_TRITON_GRPC_ENDPOINT = "localhost:8001"
DEFAULT_TRITON_METRICS_URL = "http://localhost:8002/metrics"
Expand Down

0 comments on commit 65bc1ab

Please sign in to comment.