Monitoring module injects user custom metrics and monitors the process. It supports multiple backends, protocols and data formats.
- Installation
- Getting started
- Advanced features
- System monitoring and server-side backends installation and configuration
Click here if you don't have aliBuild installed
- Compile
Monitoringand its dependencies viaaliBuild
aliBuild build Monitoring --defaults o2-dataflow- Load the environment for Monitoring (in the
alicedirectory)
alienv load Monitoring/latestGet an instance from MonitoringFactory by passing backend's URI(s) as a parameter (comma separated if more than one).
The factory is accessible from o2::monitoring namespace.
#include <MonitoringFactory.h>
using namespace o2::monitoring;
std::unique_ptr<Monitoring> monitoring = MonitoringFactory::Get("backend[-protocol]://host:port[/verbosity][?query]");See the table below to find URIs for supported backends:
| Format | Transport | URI backend[-protocol] | URI query | Default verbosity |
|---|---|---|---|---|
| - | - | no-op |
- | - |
| InfluxDB | UDP | influxdb-udp |
- | info |
| InfluxDB | Unix socket | influxdb-unix |
- | info |
| InfluxDB | StdOut | influxdb-stdout |
- | info |
| InfluxDB | Kafka | influxdb-kafka |
Kafka topic | info |
| InfluxDB | WebSocket | influxdb-ws |
token=TOKEN |
info |
| InfluxDB 2.x | HTTP | influxdbv2 |
org=ORG&bucket=BUCKET&token=TOKEN |
info |
| ApMon | UDP | apmon |
- | info |
| StdOut | - | stdout, infologger |
[Prefix] | debug |
A metric consist of 5 parameters:
- name - metric name
- values - vector of value and value name pairs
- timestamp - time of creation
- verbosity - metric "severity"
- tags - metric metadata represented as map
| Parameter name | Type | Required | Default |
|---|---|---|---|
| name | string | yes | - |
| values | map<string, int/double/string/uint64_t> | no/1 | - |
| timestamp | time_point<system_clock> | no | current time |
| verbosity | Enum (Debug/Info/Prod) | no | Verbosity::Info |
| tags | map | no | host and process names |
A metric can be constructed by providing required parameters (value and metric name, value name is set to value):
Metric{10, "name"}By default metric can be created with zero or one value (in such case value name is set to value). Any additional value may be added using .addValue method, therefore the following two metrics are identical:
Metric{10, "name"}
Metric{"name"}.addValue(10, "value")- Metric tags
Each metric can be tagged with any number of predefined tags.
In order to do so use
addTag(tags::Key, tags::Value)oraddTag(tags::Key, unsigned short)methods. The latter method allows assigning numeric value to a tag.
Metric{10, "name"}.addTag(tags::Key::Subsystem, tags::Value::QC)See the example: examples/2-TaggedMetrics.cxx.
- Global tags
Global tags are added to each metric sent eg.
hostnametag is added by default by the library.
You can add your own global tag by calling addGlobalTag(std::string_view key, std::string_view value) or addGlobalTag(tags::Key, tags::Value) on Monitoring object.
- Run number
Run number is special case of a global tag, its value can be overwritten at any time, therefore it benefits simplified handling:
setRunNumber(uint32_t). Value0is unique and means no run number is set.
Pass metric object to send method as l-value reference:
send({10, "name"})
send(Metric{20, "name"}.addTag(tags::Key::CRU, 123))
send(Metric{"throughput"}.addValue(100, "tx").addValue(200, "rx"))See how it works in the example: examples/1-Basic.cxx.
Metrics can also be injected from the command line using the o2-monitoring-send utility (self-documented).
There are 3 verbosity levels (the same as for backends): Debug, Info, Prod. By default it is set to Verbosity::Info. The default value can be overwritten using: Metric::setDefaultVerbosity(verbosity).
To overwrite verbosity on per metric basis use third, optional parameter to metric constructor:
Metric{10, "name", Verbosity::Prod}Metrics need to match backends verbosity in order to be sent, eg. backend with /info verbosity will accept Info and Prod metrics only.
In order to avoid sending each metric separately, metrics can be temporary stored in the buffer and flushed at the most convenient moment. This feature can be controlled with following two methods:
monitoring->enableBuffering(const std::size_t maxSize)
...
monitoring->flushBuffer();enableBuffering takes maximum buffer size as its parameter. The buffer gets full all values are flushed automatically.
See how it works in the example: examples/10-Buffering.cxx.
This feature can calculate derived values. To do so, use optional DerivedMetricMode mode parameter of send method:
send(Metric&& metric, [DerivedMetricMode mode])
Two modes are available:
DerivedMetricMode::RATE- rate between two following values,DerivedMetricMode::INCREMENT- sum of all passed values.DerivedMetricMode::SUPPRESS- suppresses forthcoming metric with same value, this happens until timeout is reached (configurable usingDerivedMetrics::mSuppressTimeout)
The derived value is generated only from the first value of the metric and it is added to the same metric with the value name suffixed with _rate, _increment accordingly.
See how it works in the example: examples/4-RateDerivedMetric.cxx.
This feature provides basic performance status of the process. Note that is runs in separate thread.
enableProcessMonitoring([interval in seconds, {PmMeasurement list}]);List of valid measurement lists:
PmMeasurement::CpuPmMeasurement::MemPmMeasurement::Smaps- Beware. Enabling this will trigger kernel to runsmaps_accountperiodically.
Following metrics are generated every time interval:
PmMeasurement::Cpu:
- cpuUsedPercentage - percentage of a core usage (kernel + user mode) over time interval
- involuntaryContextSwitches - involuntary context switches over time interval
- cpuUsedAbsolute - amount of time spent on process execution (in user and kernel mode) over time interval (expressed in microseconds)
PmMeasurement::Mem: (Linux only)
- memoryUsagePercentage - ratio of the process's virtual memory to memory available on the machine
- virtualMemorySize - virtual memory reserved by process (expressed in kB)
- residentSetSize - resident set size reserved by process (expressed in kB)
PmMeasurement::Smaps: (Linux only)
- proportionalSetSize - count of pages it has in memory, where each page is divided by the number of processes sharing it
- memoryPrivateClean - unmodified private pages
- memoryPrivateDirty - modified private pages
Additional metrics are generated at the end of process execution: CPU measurements:
- cpuTimeConsumedByProcess - total amount of time spent on process execution (in user and kernel mode) (expressed in microseconds)
- averageCpuUsedPercentage - average percentage of a core usage over time interval
Memory measurements: (Linux only)
- averageResidentSetSize - average resident set size used by process (expressed in kB)
- averageVirtualMemorySize - average virtual memory used by process (expressed in kB)
[METRIC] <name>,<type> <values> <timestamp> <tags>
The prefix ([METRIC]) can be changed using query component.
Overwrite metric verbosity using regex expression:
Metric::setVerbosityPolicy(Verbosity verbosity, const std::regex& regex)
This guide explains manual installation. For ansible deployment see AliceO2Group/system-configuration gitlab repo.
- Ubuntu, RHEL9, RHEL8, CS8, macOS, or CC7 with
devtoolset-9 - Boost >= 1.83, CMake
- Compile
librdkafkagit clone -b v2.3.0 https://github.com/edenhill/librdkafka && cd librdkafka cmake -H. -B./_cmake_build -DENABLE_LZ4_EXT=OFF -DCMAKE_INSTALL_LIBDIR=lib -DRDKAFKA_BUILD_TESTS=OFF -DRDKAFKA_BUILD_EXAMPLES=OFF -DCMAKE_INSTALL_PREFIX=~/librdkafka_install cmake --build ./_cmake_build --target install -j
- Compile Monitoring library, make sure to define
RdKafka_DIRand point to CMake config directory:git clone https://github.com/AliceO2Group/Monitoring && cd Monitoring cmake -H. -B./_cmake_build -DRdKafka_DIR=~/librdkafka_install/lib/cmake/RdKafka/ -DCMAKE_INSTALL_PREFIX=~/Monitoring_install cmake --build ./_cmake_build --target install -j
- Modify
monitoring.sh: add- librdkafkato "requires" - Compile Monitoring:
aliBuild build Monitoring --defaults o2-dataflow --always-prefer-system - Add
Monitoringas dependency of your project
As librdkafka is optional dependency of Monitoring it is not handled by CMakeConfig, therefore you need:
find_package(RdKafka CONFIG REQUIRED)
find_package(Monitoring CONFIG REQUIRED)And then, link against AliceO2::Monitoring target.
#include "Monitoring/MonitoringFactory.h"
...
std::vector<std::string> topics = {"<topic-to-subscribe>"};
auto client = MonitoringFactory::GetPullClient("<kafka-server:9092>", topics, "<client-id>");
for (;;) {
auto metrics = client->pull();
if (!metrics.empty()) {
/// metric.first => topic name; metric.second => metric itself
} else {
// wait a bit if no data available
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}Run-time parameters:
<topic-to-subscribe>- List of topics to subscribe<kafka-server:9092>- Kafka broker (staging or production)<client_id>- unique, self-explainable string describing the client, eg.dcs-link-statusorits-link-status.
Metrics are returned in batch of maximum 100 for each pull() call.
Native data format is Influx Line Protocol but metrics can be converted into any format listed in here: https://docs.influxdata.com/telegraf/latest/data_formats/output/