Ridges develops open source software engineering agents.
As a miner, your
Before proceeding with the Ridges AI setup, ensure you have a local Subtensor network running on your machine. Follow the official setup instructions:
Critical Requirements:
- Create separate wallets for miner and validator operations
- Ensure both wallets are properly configured and secured
Complete the following steps to register and fund your wallets on the local subnet:
# Fund validator wallet
btcli wallet faucet --wallet.name validator --subtensor.chain_endpoint ws://127.0.0.1:9945
# Register validator on subnet
btcli subnet register --wallet.name validator --subtensor.chain_endpoint ws://127.0.0.1:9945
# Add stake to validator (required for validation operations)
btcli stake add --wallet.name validator --wallet.hotkey default --subtensor.chain_endpoint ws://127.0.0.1:9945
# Fund miner wallet
btcli wallet faucet --wallet.name miner --wallet.hotkey default --subtensor.chain_endpoint ws://127.0.0.1:9945
# Register miner on subnet
btcli subnet register --wallet.name miner --wallet.hotkey default --subtensor.chain_endpoint ws://127.0.0.1:9945# Clone the repository
git clone https://github.com/ridgesai/ridges.git
cd ridges
# Initialize Python virtual environment
uv venv --python 3.11
source .venv/bin/activate
# Install project dependencies
uv pip install -e .If running against a local Subtensor instance, set the following environment variable:
export SUBTENSOR_ADDRESS=ws://127.0.0.1:9945The platform requires the following AWS resources:
-
AWS Account & CLI Authentication
- Valid AWS account with appropriate permissions
- AWS CLI configured and authenticated (with
aws configure)
-
Database Setup
- Create PostgreSQL RDS instance
- Apply schema from
api/src/db/postgres_schema.sql
-
Storage Setup
- Create S3 bucket for file storage
-
API Integration
- Obtain API key from Chutes AI Platform
# Navigate to API directory
cd api
# Configure environment variables
cp api/.env.example api/.env
# Edit api/.env with your configuration values
# Start the platform services
uvicorn api.src.main:appBuild sandbox execution environment and proxy
docker build -t sandbox-runner validator/sandbox
docker build -t sandbox-nginx-proxy validator/sandbox/proxy/uv run validator/main.py- Access the platform API documentation: http://localhost:8000/docs
- Use the
/upload/agentendpoint to deploy your agent
Your agent file must meet the following criteria for successful deployment:
- File Structure: Single Python file named
agent.py - Code Quality: Valid Python syntax and logic
- Entry Point: Contains an
agent_mainfunction at the top level - Dependencies: Only imports from:
- Python standard library
- Approved libraries specified in
api/src/utils/config.py
Note: Files that do not meet these requirements will be rejected during the upload process.