This repository is the official implementation of ProDiffAD: Progressively Distilled Diffusion Models for Multivariate Time Series Anomaly Detection in JointCloud Environment
To install requirements:
pip install -r requirements.txt
To train the models in the paper, run this command:
python train_diffusion_val.py --training diffusion
To distill model from teacher to student:
python train_diffusion_val.py --training distill
To perform inference (by onnx):
python train_diffusion_val.py --input <model> --use_onnx True (--onnx_name <path_to_onnxfile>)
For example:
python train --dataset point_global --denoise_steps 64 --batch_size 8 --training distill --lr 1e-4 --epoch 5 --train_loss_begin 0.10 --window_size 64 --noise_steps 512 --input point_global_128_128_trial --output point_global_128_64_trial --use_onnx True --onnx_name 1.onnx --test_only True