-
Notifications
You must be signed in to change notification settings - Fork 17
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
8600278
commit ab1147a
Showing
30 changed files
with
4,490 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
*.pyc | ||
data/ | ||
output/ | ||
events* | ||
*.log | ||
*.mp4 | ||
*.bin | ||
*.txt | ||
*.wav | ||
*.pkl | ||
*.jpg |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,41 @@ | ||
name: pose_diffusion | ||
|
||
train_data_path: data/ted_expressive_dataset/train | ||
val_data_path: data/ted_expressive_dataset/val | ||
test_data_path: data/ted_expressive_dataset/test | ||
|
||
wordembed_dim: 300 | ||
wordembed_path: data/fasttext/crawl-300d-2M-subword.bin | ||
|
||
model_save_path: output/train_diffusion_expressive_0.1 | ||
random_seed: -1 | ||
|
||
pose_dim: 126 | ||
diff_hidden_dim: 512 | ||
block_depth: 8 | ||
|
||
# model params | ||
model: pose_diffusion | ||
mean_dir_vec: [-0.0737964, -0.9968923, -0.1082858, 0.9111595, 0.2399522, -0.102547 , -0.8936886, 0.3131501, -0.1039348, 0.2093927, 0.958293 , 0.0824881, -0.1689021, -0.0353824, -0.7588258, -0.2794763, -0.2495191, -0.614666 , -0.3877234, 0.005006 , -0.5301695, -0.5098616, 0.2257808, 0.0053111, -0.2393621, -0.1022204, -0.6583039, -0.4992898, 0.1228059, -0.3292085, -0.4753748, 0.2132857, 0.1742853, -0.2062069, 0.2305175, -0.5897119, -0.5452555, 0.1303197, -0.2181693, -0.5221036, 0.1211322, 0.1337591, -0.2164441, 0.0743345, -0.6464546, -0.5284583, 0.0457585, -0.319634 , -0.5074904, 0.1537192, 0.1365934, -0.4354402, -0.3836682, -0.3850554, -0.4927187, -0.2417618, -0.3054556, -0.3556116, -0.281753 , -0.5164358, -0.3064435, 0.9284261, -0.067134 , 0.2764367, 0.006997 , -0.7365526, 0.2421269, -0.225798 , -0.6387642, 0.3788997, 0.0283412, -0.5451686, 0.5753376, 0.1935219, 0.0632555, 0.2122412, -0.0624179, -0.6755542, 0.5212831, 0.1043523, -0.345288 , 0.5443628, 0.128029 , 0.2073687, 0.2197118, 0.2821399, -0.580695 , 0.573988 , 0.0786667, -0.2133071, 0.5532452, -0.0006157, 0.1598754, 0.2093099, 0.124119, -0.6504359, 0.5465003, 0.0114155, -0.3203954, 0.5512083, 0.0489287, 0.1676814, 0.4190787, -0.4018607, -0.3912126, 0.4841548, -0.2668508, -0.3557675, 0.3416916, -0.2419564, -0.5509825, 0.0485515, -0.6343101, -0.6817347, -0.4705639, -0.6380668, 0.4641643, 0.4540192, -0.6486361, 0.4604001, -0.3256226, 0.1883097, 0.8057457, 0.3257385, 0.1292366, 0.815372] | ||
mean_pose: [-0.0046788, -0.5397806, 0.007695 , -0.0171913, -0.7060388,-0.0107034, 0.1550734, -0.6823077, -0.0303645, -0.1514748, -0.6819547, -0.0268262, 0.2094328, -0.469447 , -0.0096073, -0.2318253, -0.4680838, -0.0444074, 0.1667382, -0.4643363, -0.1895118, -0.1648597, -0.4552845, -0.2159728, 0.1387546, -0.4859474, -0.2506667, 0.1263615, -0.4856088, -0.2675801, 0.1149031, -0.4804542, -0.267329 , 0.1414847, -0.4727709, -0.2583424, 0.1262482, -0.4686185, -0.2682536, 0.1150217, -0.4633611, -0.2640182, 0.1475897, -0.4415648, -0.2438853, 0.1367996, -0.4383164, -0.248248 , 0.1267222, -0.435534 , -0.2455436, 0.1455485, -0.4557491, -0.2521977, 0.1305471, -0.4535603, -0.2611591, 0.1184687, -0.4495366, -0.257798 , 0.1451682, -0.4802511, -0.2081622, 0.1301337, -0.4865308, -0.2175783, 0.1208341, -0.4932623, -0.2311025, -0.1409241,-0.4742868, -0.2795303, -0.1287992, -0.4724431, -0.2963172,-0.1159225, -0.4676439, -0.2948754, -0.1427748, -0.4589126,-0.2861245, -0.126862 , -0.4547355, -0.2962466, -0.1140265,-0.451308 , -0.2913815, -0.1447202, -0.4260471, -0.2697673,-0.1333492, -0.4239912, -0.2738043, -0.1226859, -0.4238346,-0.2706725, -0.1446909, -0.440342 , -0.2789209, -0.1291436,-0.4391063, -0.2876539, -0.1160435, -0.4376317, -0.2836147,-0.1441438, -0.4729031, -0.2355619, -0.1293268, -0.4793807,-0.2468831, -0.1204146, -0.4847246, -0.2613876, -0.0056085,-0.9224338, -0.1677302, -0.0352157, -0.963936 , -0.1388849,0.0236298, -0.9650772, -0.1385154, -0.0697098, -0.9514691,-0.055632 , 0.0568838, -0.9565502, -0.0567985] | ||
|
||
hidden_size: 300 | ||
input_context: audio | ||
|
||
classifier_free: True | ||
null_cond_prob: 0.1 | ||
|
||
# train params | ||
epochs: 500 | ||
batch_size: 128 | ||
learning_rate: 0.0005 | ||
|
||
# eval params | ||
eval_net_path: output/TED_Expressive_output/AE-cos1e-3/checkpoint_best.bin | ||
|
||
# dataset params | ||
motion_resampling_framerate: 15 | ||
n_poses: 34 | ||
n_pre_poses: 4 | ||
subdivision_stride: 10 | ||
loader_workers: 4 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,41 @@ | ||
name: pose_diffusion | ||
|
||
train_data_path: data/ted_dataset/lmdb_train | ||
val_data_path: data/ted_dataset/lmdb_val | ||
test_data_path: data/ted_dataset/lmdb_test | ||
|
||
wordembed_dim: 300 | ||
wordembed_path: data/fasttext/crawl-300d-2M-subword.bin | ||
|
||
model_save_path: output/train_diffusion_ted | ||
random_seed: -1 | ||
|
||
pose_dim: 27 | ||
diff_hidden_dim: 256 | ||
block_depth: 8 | ||
|
||
# model params | ||
model: pose_diffusion | ||
mean_dir_vec: [ 0.0154009, -0.9690125, -0.0884354, -0.0022264, -0.8655276, 0.4342174, -0.0035145, -0.8755367, -0.4121039, -0.9236511, 0.3061306, -0.0012415, -0.5155854, 0.8129665, 0.0871897, 0.2348464, 0.1846561, 0.8091402, 0.9271948, 0.2960011, -0.013189 , 0.5233978, 0.8092403, 0.0725451, -0.2037076, 0.1924306, 0.8196916] | ||
mean_pose: [ 0.0000306, 0.0004946, 0.0008437, 0.0033759, -0.2051629, -0.0143453, 0.0031566, -0.3054764, 0.0411491, 0.0029072, -0.4254303, -0.001311 , -0.1458413, -0.1505532, -0.0138192, -0.2835603, 0.0670333, 0.0107002, -0.2280813, 0.112117 , 0.2087789, 0.1523502, -0.1521499, -0.0161503, 0.291909 , 0.0644232, 0.0040145, 0.2452035, 0.1115339, 0.2051307] | ||
|
||
hidden_size: 300 | ||
input_context: audio | ||
|
||
classifier_free: True | ||
null_cond_prob: 0.1 | ||
|
||
# train params | ||
epochs: 500 | ||
batch_size: 128 | ||
learning_rate: 0.0005 | ||
|
||
# eval params | ||
eval_net_path: output/train_h36m_gesture_autoencoder/gesture_autoencoder_checkpoint_best.bin | ||
|
||
# dataset params | ||
motion_resampling_framerate: 15 | ||
n_poses: 34 | ||
n_pre_poses: 4 | ||
subdivision_stride: 10 | ||
loader_workers: 4 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,212 @@ | ||
""" create data samples """ | ||
from collections import defaultdict | ||
|
||
import lmdb | ||
import math | ||
import numpy as np | ||
import pyarrow | ||
|
||
import utils.data_utils | ||
from data_loader.motion_preprocessor import MotionPreprocessor | ||
|
||
|
||
class DataPreprocessor: | ||
def __init__(self, clip_lmdb_dir, out_lmdb_dir, n_poses, subdivision_stride, | ||
pose_resampling_fps, mean_pose, mean_dir_vec, disable_filtering=False): | ||
self.n_poses = n_poses | ||
self.subdivision_stride = subdivision_stride | ||
self.skeleton_resampling_fps = pose_resampling_fps | ||
self.mean_pose = mean_pose | ||
self.mean_dir_vec = mean_dir_vec | ||
self.disable_filtering = disable_filtering | ||
|
||
self.src_lmdb_env = lmdb.open(clip_lmdb_dir, readonly=True, lock=False) | ||
with self.src_lmdb_env.begin() as txn: | ||
self.n_videos = txn.stat()['entries'] | ||
|
||
self.spectrogram_sample_length = utils.data_utils.calc_spectrogram_length_from_motion_length(self.n_poses, self.skeleton_resampling_fps) | ||
self.audio_sample_length = int(self.n_poses / self.skeleton_resampling_fps * 16000) | ||
|
||
# create db for samples | ||
map_size = 1024 * 50 # in MB | ||
map_size <<= 20 # in B | ||
self.dst_lmdb_env = lmdb.open(out_lmdb_dir, map_size=map_size) | ||
self.n_out_samples = 0 | ||
|
||
def run(self): | ||
n_filtered_out = defaultdict(int) | ||
src_txn = self.src_lmdb_env.begin(write=False) | ||
|
||
# sampling and normalization | ||
cursor = src_txn.cursor() | ||
for key, value in cursor: | ||
video = pyarrow.deserialize(value) | ||
vid = video['vid'] | ||
clips = video['clips'] | ||
for clip_idx, clip in enumerate(clips): | ||
filtered_result = self._sample_from_clip(vid, clip) | ||
for type in filtered_result.keys(): | ||
n_filtered_out[type] += filtered_result[type] | ||
|
||
# print stats | ||
with self.dst_lmdb_env.begin() as txn: | ||
print('no. of samples: ', txn.stat()['entries']) | ||
n_total_filtered = 0 | ||
for type, n_filtered in n_filtered_out.items(): | ||
print('{}: {}'.format(type, n_filtered)) | ||
n_total_filtered += n_filtered | ||
print('no. of excluded samples: {} ({:.1f}%)'.format( | ||
n_total_filtered, 100 * n_total_filtered / (txn.stat()['entries'] + n_total_filtered))) | ||
|
||
# close db | ||
self.src_lmdb_env.close() | ||
self.dst_lmdb_env.sync() | ||
self.dst_lmdb_env.close() | ||
|
||
def _sample_from_clip(self, vid, clip): | ||
clip_skeleton = clip['skeletons_3d'] | ||
clip_audio = clip['audio_feat'] | ||
clip_audio_raw = clip['audio_raw'] | ||
clip_word_list = clip['words'] | ||
clip_s_f, clip_e_f = clip['start_frame_no'], clip['end_frame_no'] | ||
clip_s_t, clip_e_t = clip['start_time'], clip['end_time'] | ||
|
||
n_filtered_out = defaultdict(int) | ||
|
||
# skeleton resampling | ||
clip_skeleton = utils.data_utils.resample_pose_seq(clip_skeleton, clip_e_t - clip_s_t, self.skeleton_resampling_fps) | ||
|
||
# divide | ||
aux_info = [] | ||
sample_skeletons_list = [] | ||
sample_words_list = [] | ||
sample_audio_list = [] | ||
sample_spectrogram_list = [] | ||
|
||
num_subdivision = math.floor( | ||
(len(clip_skeleton) - self.n_poses) | ||
/ self.subdivision_stride) + 1 # floor((K - (N+M)) / S) + 1 | ||
expected_audio_length = utils.data_utils.calc_spectrogram_length_from_motion_length(len(clip_skeleton), self.skeleton_resampling_fps) | ||
assert abs(expected_audio_length - clip_audio.shape[1]) <= 5, 'audio and skeleton lengths are different' | ||
|
||
for i in range(num_subdivision): | ||
start_idx = i * self.subdivision_stride | ||
fin_idx = start_idx + self.n_poses | ||
|
||
sample_skeletons = clip_skeleton[start_idx:fin_idx] | ||
subdivision_start_time = clip_s_t + start_idx / self.skeleton_resampling_fps | ||
subdivision_end_time = clip_s_t + fin_idx / self.skeleton_resampling_fps | ||
sample_words = self.get_words_in_time_range(word_list=clip_word_list, | ||
start_time=subdivision_start_time, | ||
end_time=subdivision_end_time) | ||
|
||
# spectrogram | ||
audio_start = math.floor(start_idx / len(clip_skeleton) * clip_audio.shape[1]) | ||
audio_end = audio_start + self.spectrogram_sample_length | ||
if audio_end > clip_audio.shape[1]: # correct size mismatch between poses and audio | ||
# logging.info('expanding audio array, audio start={}, end={}, clip_length={}'.format( | ||
# audio_start, audio_end, clip_audio.shape[1])) | ||
n_padding = audio_end - clip_audio.shape[1] | ||
padded_data = np.pad(clip_audio, ((0, 0), (0, n_padding)), mode='symmetric') | ||
sample_spectrogram = padded_data[:, audio_start:audio_end] | ||
else: | ||
sample_spectrogram = clip_audio[:, audio_start:audio_end] | ||
|
||
# raw audio | ||
audio_start = math.floor(start_idx / len(clip_skeleton) * len(clip_audio_raw)) | ||
audio_end = audio_start + self.audio_sample_length | ||
if audio_end > len(clip_audio_raw): # correct size mismatch between poses and audio | ||
# logging.info('expanding audio array, audio start={}, end={}, clip_length={}'.format( | ||
# audio_start, audio_end, len(clip_audio_raw))) | ||
n_padding = audio_end - len(clip_audio_raw) | ||
padded_data = np.pad(clip_audio_raw, (0, n_padding), mode='symmetric') | ||
sample_audio = padded_data[audio_start:audio_end] | ||
else: | ||
sample_audio = clip_audio_raw[audio_start:audio_end] | ||
|
||
if len(sample_words) >= 2: | ||
# filtering motion skeleton data | ||
sample_skeletons, filtering_message = MotionPreprocessor(sample_skeletons, self.mean_pose).get() | ||
is_correct_motion = (sample_skeletons != []) | ||
motion_info = {'vid': vid, | ||
'start_frame_no': clip_s_f + start_idx, | ||
'end_frame_no': clip_s_f + fin_idx, | ||
'start_time': subdivision_start_time, | ||
'end_time': subdivision_end_time, | ||
'is_correct_motion': is_correct_motion, 'filtering_message': filtering_message} | ||
|
||
if is_correct_motion or self.disable_filtering: | ||
sample_skeletons_list.append(sample_skeletons) | ||
sample_words_list.append(sample_words) | ||
sample_audio_list.append(sample_audio) | ||
sample_spectrogram_list.append(sample_spectrogram) | ||
aux_info.append(motion_info) | ||
else: | ||
n_filtered_out[filtering_message] += 1 | ||
|
||
if len(sample_skeletons_list) > 0: | ||
with self.dst_lmdb_env.begin(write=True) as txn: | ||
for words, poses, audio, spectrogram, aux in zip(sample_words_list, sample_skeletons_list, | ||
sample_audio_list, sample_spectrogram_list, | ||
aux_info): | ||
# preprocessing for poses | ||
poses = np.asarray(poses) | ||
dir_vec = utils.data_utils.convert_pose_seq_to_dir_vec(poses) | ||
normalized_dir_vec = self.normalize_dir_vec(dir_vec, self.mean_dir_vec) | ||
|
||
# save | ||
k = '{:010}'.format(self.n_out_samples).encode('ascii') | ||
v = [words, poses, normalized_dir_vec, audio, spectrogram, aux] | ||
v = pyarrow.serialize(v).to_buffer() | ||
txn.put(k, v) | ||
self.n_out_samples += 1 | ||
|
||
return n_filtered_out | ||
|
||
@staticmethod | ||
def normalize_dir_vec(dir_vec, mean_dir_vec): | ||
return dir_vec - mean_dir_vec | ||
|
||
@staticmethod | ||
def get_words_in_time_range(word_list, start_time, end_time): | ||
words = [] | ||
|
||
for word in word_list: | ||
_, word_s, word_e = word[0], word[1], word[2] | ||
|
||
if word_s >= end_time: | ||
break | ||
|
||
if word_e <= start_time: | ||
continue | ||
|
||
words.append(word) | ||
|
||
return words | ||
|
||
@staticmethod | ||
def unnormalize_data(normalized_data, data_mean, data_std, dimensions_to_ignore): | ||
""" | ||
this method is from https://github.com/asheshjain399/RNNexp/blob/srnn/structural_rnn/CRFProblems/H3.6m/generateMotionData.py#L12 | ||
""" | ||
T = normalized_data.shape[0] | ||
D = data_mean.shape[0] | ||
|
||
origData = np.zeros((T, D), dtype=np.float32) | ||
dimensions_to_use = [] | ||
for i in range(D): | ||
if i in dimensions_to_ignore: | ||
continue | ||
dimensions_to_use.append(i) | ||
dimensions_to_use = np.array(dimensions_to_use) | ||
|
||
origData[:, dimensions_to_use] = normalized_data | ||
|
||
# potentially inefficient, but only done once per experiment | ||
stdMat = data_std.reshape((1, D)) | ||
stdMat = np.repeat(stdMat, T, axis=0) | ||
meanMat = data_mean.reshape((1, D)) | ||
meanMat = np.repeat(meanMat, T, axis=0) | ||
origData = np.multiply(origData, stdMat) + meanMat | ||
|
||
return origData |
Oops, something went wrong.