scientisttools is a Python
package dedicated to multivariate Exploratory Data Analysis.
- It performs classical principal component methods :
- Principal Components Analysis (PCA)
- Principal Components Analysis with partial correlation matrix (PPCA)
- Weighted Principal Components Analysis (WPCA)
- Expectation-Maximization Principal Components Analysis (EMPCA)
- Exploratory Factor Analysis (EFA)
- Classical Multidimensional Scaling (CMDSCALE)
- Metric and Non - Metric Multidimensional Scaling (MDS)
- Correspondence Analysis (CA)
- Multiple Correspondence Analysis (MCA)
- Factor Analysis of Mixed Data (FAMD)
- Multiple Factor Analysis (MFA)
- In some methods, it allowed to add supplementary informations such as supplementary individuals and/or variables.
- It provides a geometrical point of view, a lot of graphical outputs.
- It provides efficient implementations, using a scikit-learn API.
Those statistical methods can be used in two ways :
- as descriptive methods ("datamining approach")
- as reduction methods in scikit-learn pipelines ("machine learning approach")
scientisttools
also performs some algorithms such as clustering analysis
and discriminant analysis
.
- Clustering analysis:
- Hierarchical Clustering on Principal Components (HCPC)
- Variables Hierarchical Clustering Analysis (VARHCA)
- Variables Hierarchical Clustering Analysis on Principal Components (VARHCPC)
- Categorical Variables Hierarchical Clustering Analysis (CATVARHCA)
- Discriminant Analysis
- Canonical Discriminant Analysis (CANDISC)
- Linear Discriminant Analysis (LDA)
- Discriminant with qualitatives variables (DISQUAL)
- Discriminant Correspondence Analysis (DISCA)
- Discriminant with mixed data (DISMIX)
- Stepwise Discriminant Analysis (STEPDISC) (only
backward
elimination is available).
Notebooks are availabled.
scientisttools requires
Python >=3.10
Numpy >= 1.23.5
Matplotlib >= 3.5.3
Scikit-learn >= 1.2.2
Pandas >= 1.5.3
mapply >= 0.1.21
Plotnine >= 0.10.1
Plydata >= 0.4.3
You can install scientisttools using pip
:
pip install scientisttools
Tutorial are available
https://github.com/enfantbenidedieu/scientisttools/blob/master/ca_example2.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/classic_mds.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/efa_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/famd_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/ggcorrplot.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/mca_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/mds_example.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/partial_pca.ipynb
https://github.com/enfantbenidedieu/scientisttools/blob/master/pca_example.ipynb
Duvérier DJIFACK ZEBAZE (duverierdjifack@gmail.com)