A unified platform that visualizes and tracks space objects, debris, and weather across multiple planets using NASA's open datasets.
- β TLE (Two-Line Element) orbit data processing
- β Radar tracking data (range, velocity, cross-section)
- β Optical telescope observations
- β NASA Space Weather integration
- β Multi-sensor data fusion
- β SGP4 orbit propagation engine
- β Real-time position calculation
- β Track association across time
- β Object classification (satellites vs debris)
- β Collision risk assessment
- β Threat scoring algorithm
- β 3D orbital visualization (Earth & Mars)
- β Ground track mapping
- β Real-time alerts dashboard
- β Risk heatmaps
- β Mission impact reports
- β Space weather monitoring
- β Data catalog browser
- Python 3.8+
- pip
- Clone or navigate to the project directory
cd /Users/Ayan/Desktop/Hackathon- Install dependencies
pip install -r requirements.txt- Run the application
streamlit run streamlit_app.pyThe dashboard will open automatically in your browser at http://localhost:8501
Hackathon/
βββ streamlit_app.py # Main Streamlit dashboard
βββ data_processor.py # Data loading and processing
βββ orbit_engine.py # SGP4 orbit calculations
βββ risk_assessment.py # Collision risk algorithms
βββ visualization.py # Plotly 3D visualizations
βββ requirements.txt # Python dependencies
βββ app.py # NASA data fetcher
βββ mockdata.py # Mock data generator
βββ data/ # Data directory
βββ mock_tle.csv # Satellite orbital elements
βββ mock_radar.csv # Radar tracking data
βββ mock_optical.csv # Telescope observations
βββ mock_space_weather.csv # Space weather data
βββ ... (other data files)
- Loads TLE, radar, optical, and space weather data
- Parses orbital elements
- Merges multi-source data
- Classifies space objects
- SGP4 satellite propagation
- Trajectory generation
- Ground track calculation
- Keplerian element computation
- Mars orbit simulation
- Collision probability calculation
- Conjunction event detection
- Space weather impact analysis
- Threat level classification
- Mission impact scoring
- 3D orbital plots (Plotly)
- Ground track mapping
- Altitude profiles
- Risk heatmaps
- Space weather charts
- System overview with key metrics
- Active alert summary
- Quick statistics
- Real-time status indicators
- Interactive 3D orbital plots
- Multi-satellite trajectory view
- Ground track mapping
- Altitude profiles
- Risk distribution heatmap
- Real-time conjunction warnings
- Risk assessment dashboard
- Mission impact summary
- Detailed alert log
- Conjunction timeline
- Complete satellite catalog
- Radar tracking data browser
- Optical observation gallery
- Raw TLE data viewer
- CSV export functionality
- Current conditions monitor
- Solar flare tracking
- Geomagnetic activity (Kp index)
- Solar wind speed trends
- Historical data analysis
- Executive summary report
- Risk breakdown analysis
- Top risk objects list
- Alert distribution charts
- Downloadable reports
- Uses SGP4 (Simplified General Perturbations) model
- Accurate for LEO, MEO, and GEO satellites
- Handles orbital perturbations
- Real-time position prediction
Collision risk score based on:
- Proximity Score (60%): Distance between objects
- Velocity Score (30%): Relative velocity
- Size Score (10%): Radar cross-section
Threat Levels:
- CRITICAL: < 2 km separation
- HIGH: 2-5 km separation
- MEDIUM: 5-10 km separation
- LOW: > 10 km separation
Factors considered:
- Solar flare class (A, B, C, M, X)
- Kp geomagnetic index (0-9)
- Solar wind speed
- Atmospheric density (drag effect)
- Mock TLE Data: Simulated satellite orbital elements
- NASA Space Weather: Real-time solar activity
- Radar Tracking: Simulated range/velocity measurements
- Optical Observations: NASA image database
- Space-Track.org: Real TLE data (via
app.py)
Edit risk_assessment.py:
self.collision_threshold = 5.0 # km
self.critical_threshold = 2.0 # kmEdit visualization.py:
self.earth_radius = 6371.0 # km
resolution = 30 # sphere detailEdit streamlit_app.py to add/remove pages or customize UI.
pip install --upgrade -r requirements.txtstreamlit run streamlit_app.py --server.port 8502Ensure all CSV files exist in the data/ directory. Run mockdata.py to regenerate:
cd data
python ../mockdata.py- Real-time TLE updates via Space-Track API
- Machine learning for debris classification
- Multi-planet conjunction analysis
- Historical trajectory playback
- Mobile-responsive design
- WebGL-based 3D rendering for performance
- Automated report scheduling
- Email/SMS alert notifications
MIT License - Feel free to use for hackathons, research, or commercial projects.
Built for NASA Space Apps Challenge 2024
- NASA Open Data Portal
- Space-Track.org
- SGP4 Library
- Plotly Visualization Library
- Streamlit Framework
β Star this repo if you find it useful!
For questions or issues, please open a GitHub issue or contact the development team.