forked from open-mmlab/mmagic
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'idx_more_setting' into 'master'
Update model url and add three more setting See merge request open-mmlab/mmediting!349
- Loading branch information
Showing
8 changed files
with
405 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
125 changes: 125 additions & 0 deletions
125
configs/mattors/gca/baseline_dimaug_r34_4x10_200k_comp1k.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
# model settings | ||
model = dict( | ||
type='GCA', | ||
backbone=dict( | ||
type='SimpleEncoderDecoder', | ||
encoder=dict( | ||
type='ResShortcutEnc', | ||
block='BasicBlock', | ||
layers=[3, 4, 4, 2], | ||
in_channels=4, | ||
with_spectral_norm=True), | ||
decoder=dict( | ||
type='ResShortcutDec', | ||
block='BasicBlockDec', | ||
layers=[2, 3, 3, 2], | ||
with_spectral_norm=True)), | ||
loss_alpha=dict(type='L1Loss'), | ||
pretrained='open-mmlab://mmedit/res34_en_nomixup') | ||
train_cfg = dict(train_backbone=True) | ||
test_cfg = dict(metrics=['SAD', 'MSE', 'GRAD', 'CONN']) | ||
|
||
# dataset settings | ||
dataset_type = 'AdobeComp1kDataset' | ||
data_root = './data/adobe_composition-1k/' | ||
bg_dir = './data/coco/train2017' | ||
img_norm_cfg = dict( | ||
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], to_rgb=True) | ||
train_pipeline = [ | ||
dict(type='LoadImageFromFile', key='alpha', flag='grayscale'), | ||
dict(type='LoadImageFromFile', key='merged'), | ||
dict( | ||
type='CropAroundUnknown', | ||
keys=['alpha', 'merged'], | ||
crop_sizes=[320, 480, 640]), | ||
dict(type='Flip', keys=['alpha', 'merged']), | ||
dict( | ||
type='Resize', | ||
keys=['alpha', 'merged'], | ||
scale=(320, 320), | ||
keep_ratio=False), | ||
dict(type='GenerateTrimap', kernel_size=(1, 30)), | ||
dict(type='RescaleToZeroOne', keys=['merged', 'alpha']), | ||
dict(type='Normalize', keys=['merged'], **img_norm_cfg), | ||
dict(type='Collect', keys=['merged', 'alpha', 'trimap'], meta_keys=[]), | ||
dict(type='ImageToTensor', keys=['merged', 'alpha', 'trimap']), | ||
dict(type='FormatTrimap', to_onehot=False), | ||
] | ||
test_pipeline = [ | ||
dict( | ||
type='LoadImageFromFile', | ||
key='alpha', | ||
flag='grayscale', | ||
save_original_img=True), | ||
dict( | ||
type='LoadImageFromFile', | ||
key='trimap', | ||
flag='grayscale', | ||
save_original_img=True), | ||
dict(type='LoadImageFromFile', key='merged'), | ||
dict(type='Pad', keys=['trimap', 'merged'], mode='reflect'), | ||
dict(type='RescaleToZeroOne', keys=['merged']), | ||
dict(type='Normalize', keys=['merged'], **img_norm_cfg), | ||
dict( | ||
type='Collect', | ||
keys=['merged', 'trimap'], | ||
meta_keys=[ | ||
'merged_path', 'pad', 'merged_ori_shape', 'ori_alpha', 'ori_trimap' | ||
]), | ||
dict(type='ImageToTensor', keys=['merged', 'trimap']), | ||
dict(type='FormatTrimap', to_onehot=False), | ||
] | ||
data = dict( | ||
samples_per_gpu=10, | ||
workers_per_gpu=4, | ||
val_samples_per_gpu=1, | ||
val_workers_per_gpu=4, | ||
drop_last=True, | ||
train=dict( | ||
type=dataset_type, | ||
ann_file=data_root + 'training_list.json', | ||
data_prefix=data_root, | ||
pipeline=train_pipeline), | ||
val=dict( | ||
type=dataset_type, | ||
ann_file=data_root + 'test_list.json', | ||
data_prefix=data_root, | ||
pipeline=test_pipeline), | ||
test=dict( | ||
type=dataset_type, | ||
ann_file=data_root + 'test_list.json', | ||
data_prefix=data_root, | ||
pipeline=test_pipeline)) | ||
|
||
# optimizer | ||
optimizers = dict(type='Adam', lr=4e-4, betas=[0.5, 0.999]) | ||
# learning policy | ||
lr_config = dict( | ||
policy='CosineAnealing', | ||
min_lr=0, | ||
by_epoch=False, | ||
warmup='linear', | ||
warmup_iters=5000, | ||
warmup_ratio=0.001) | ||
|
||
# checkpoint saving | ||
checkpoint_config = dict(interval=2000, by_epoch=False) | ||
evaluation = dict(interval=2000, save_image=False, gpu_collect=False) | ||
# yapf:disable | ||
log_config = dict( | ||
interval=10, | ||
hooks=[ | ||
dict(type='TextLoggerHook', by_epoch=False), | ||
# dict(type='TensorboardLoggerHook'), | ||
# dict(type='PaviLoggerHook', init_kwargs=dict(project='gca')) | ||
]) | ||
# yapf:enable | ||
|
||
# runtime settings | ||
total_iters = 200000 | ||
dist_params = dict(backend='nccl') | ||
log_level = 'INFO' | ||
work_dir = './work_dirs/shortcut' | ||
load_from = None | ||
resume_from = None | ||
workflow = [('train', 1)] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
# model settings | ||
model = dict( | ||
type='GCA', | ||
backbone=dict( | ||
type='SimpleEncoderDecoder', | ||
encoder=dict( | ||
type='ResGCAEncoder', | ||
block='BasicBlock', | ||
layers=[3, 4, 4, 2], | ||
in_channels=4, | ||
with_spectral_norm=True), | ||
decoder=dict( | ||
type='ResGCADecoder', | ||
block='BasicBlockDec', | ||
layers=[2, 3, 3, 2], | ||
with_spectral_norm=True)), | ||
loss_alpha=dict(type='L1Loss'), | ||
pretrained='open-mmlab://mmedit/res34_en_nomixup') | ||
train_cfg = dict(train_backbone=True) | ||
test_cfg = dict(metrics=['SAD', 'MSE', 'GRAD', 'CONN']) | ||
|
||
# dataset settings | ||
dataset_type = 'AdobeComp1kDataset' | ||
data_root = './data/adobe_composition-1k/' | ||
bg_dir = './data/coco/train2017' | ||
img_norm_cfg = dict( | ||
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], to_rgb=True) | ||
train_pipeline = [ | ||
dict(type='LoadImageFromFile', key='alpha', flag='grayscale'), | ||
dict(type='LoadImageFromFile', key='merged'), | ||
dict( | ||
type='CropAroundUnknown', | ||
keys=['alpha', 'merged'], | ||
crop_sizes=[320, 480, 640]), | ||
dict(type='Flip', keys=['alpha', 'merged']), | ||
dict( | ||
type='Resize', | ||
keys=['alpha', 'merged'], | ||
scale=(320, 320), | ||
keep_ratio=False), | ||
dict(type='GenerateTrimap', kernel_size=(1, 30)), | ||
dict(type='RescaleToZeroOne', keys=['merged', 'alpha']), | ||
dict(type='Normalize', keys=['merged'], **img_norm_cfg), | ||
dict(type='Collect', keys=['merged', 'alpha', 'trimap'], meta_keys=[]), | ||
dict(type='ImageToTensor', keys=['merged', 'alpha', 'trimap']), | ||
dict(type='FormatTrimap', to_onehot=False), | ||
] | ||
test_pipeline = [ | ||
dict( | ||
type='LoadImageFromFile', | ||
key='alpha', | ||
flag='grayscale', | ||
save_original_img=True), | ||
dict( | ||
type='LoadImageFromFile', | ||
key='trimap', | ||
flag='grayscale', | ||
save_original_img=True), | ||
dict(type='LoadImageFromFile', key='merged'), | ||
dict(type='Pad', keys=['trimap', 'merged'], mode='reflect'), | ||
dict(type='RescaleToZeroOne', keys=['merged']), | ||
dict(type='Normalize', keys=['merged'], **img_norm_cfg), | ||
dict( | ||
type='Collect', | ||
keys=['merged', 'trimap'], | ||
meta_keys=[ | ||
'merged_path', 'pad', 'merged_ori_shape', 'ori_alpha', 'ori_trimap' | ||
]), | ||
dict(type='ImageToTensor', keys=['merged', 'trimap']), | ||
dict(type='FormatTrimap', to_onehot=False), | ||
] | ||
data = dict( | ||
samples_per_gpu=10, | ||
workers_per_gpu=4, | ||
val_samples_per_gpu=1, | ||
val_workers_per_gpu=4, | ||
drop_last=True, | ||
train=dict( | ||
type=dataset_type, | ||
ann_file=data_root + 'training_list.json', | ||
data_prefix=data_root, | ||
pipeline=train_pipeline), | ||
val=dict( | ||
type=dataset_type, | ||
ann_file=data_root + 'test_list.json', | ||
data_prefix=data_root, | ||
pipeline=test_pipeline), | ||
test=dict( | ||
type=dataset_type, | ||
ann_file=data_root + 'test_list.json', | ||
data_prefix=data_root, | ||
pipeline=test_pipeline)) | ||
|
||
# optimizer | ||
optimizers = dict(type='Adam', lr=4e-4, betas=[0.5, 0.999]) | ||
# learning policy | ||
lr_config = dict( | ||
policy='CosineAnealing', | ||
min_lr=0, | ||
by_epoch=False, | ||
warmup='linear', | ||
warmup_iters=5000, | ||
warmup_ratio=0.001) | ||
|
||
# checkpoint saving | ||
checkpoint_config = dict(interval=2000, by_epoch=False) | ||
evaluation = dict(interval=2000, save_image=False, gpu_collect=False) | ||
# yapf:disable | ||
log_config = dict( | ||
interval=10, | ||
hooks=[ | ||
dict(type='TextLoggerHook', by_epoch=False), | ||
# dict(type='TensorboardLoggerHook'), | ||
# dict(type='PaviLoggerHook', init_kwargs=dict(project='gca')) | ||
]) | ||
# yapf:enable | ||
|
||
# runtime settings | ||
total_iters = 200000 | ||
dist_params = dict(backend='nccl') | ||
log_level = 'INFO' | ||
work_dir = './work_dirs/gca' | ||
load_from = None | ||
resume_from = None | ||
workflow = [('train', 1)] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.