Skip to content

Commit

Permalink
Automated documentation update.
Browse files Browse the repository at this point in the history
PiperOrigin-RevId: 557571934
  • Loading branch information
The TensorFlow Datasets Authors committed Aug 16, 2023
1 parent 2435521 commit 1728271
Showing 1 changed file with 14 additions and 42 deletions.
56 changes: 14 additions & 42 deletions docs/catalog/celeb_a.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
<meta itemprop="name" content="TensorFlow Datasets" />
</div>
<meta itemprop="name" content="celeb_a" />
<meta itemprop="description" content="CelebFaces Attributes Dataset (CelebA) is a large-scale face attributes dataset&#10;with more than 200K celebrity images, each with 40 attribute annotations. The&#10;images in this dataset cover large pose variations and background clutter.&#10;CelebA has large diversities, large quantities, and rich annotations,&#10;including - 10,177 number of identities, - 202,599 number of face images, and -&#10;5 landmark locations, 40 binary attributes annotations per image.&#10;&#10;The dataset can be employed as the training and test sets for the following&#10;computer vision tasks: face attribute recognition, face detection, and landmark&#10;(or facial part) localization.&#10;&#10;Note: CelebA dataset may contain potential bias. The fairness indicators&#10;[example](https://www.tensorflow.org/responsible_ai/fairness_indicators/tutorials/Fairness_Indicators_TFCO_CelebA_Case_Study)&#10;goes into detail about several considerations to keep in mind while using the&#10;CelebA dataset.&#10;&#10;To use this dataset:&#10;&#10;```python&#10;import tensorflow_datasets as tfds&#10;&#10;ds = tfds.load(&#x27;celeb_a&#x27;, split=&#x27;train&#x27;)&#10;for ex in ds.take(4):&#10; print(ex)&#10;```&#10;&#10;See [the guide](https://www.tensorflow.org/datasets/overview) for more&#10;informations on [tensorflow_datasets](https://www.tensorflow.org/datasets).&#10;&#10;&lt;img src=&quot;https://storage.googleapis.com/tfds-data/visualization/fig/celeb_a-2.0.1.png&quot; alt=&quot;Visualization&quot; width=&quot;500px&quot;&gt;&#10;&#10;" />
<meta itemprop="description" content="CelebFaces Attributes Dataset (CelebA) is a large-scale face attributes dataset&#10;with more than 200K celebrity images, each with 40 attribute annotations. The&#10;images in this dataset cover large pose variations and background clutter.&#10;CelebA has large diversities, large quantities, and rich annotations,&#10;including - 10,177 number of identities, - 202,599 number of face images, and -&#10;5 landmark locations, 40 binary attributes annotations per image.&#10;&#10;The dataset can be employed as the training and test sets for the following&#10;computer vision tasks: face attribute recognition, face detection, and landmark&#10;(or facial part) localization.&#10;&#10;Note: CelebA dataset may contain potential bias. The fairness indicators&#10;[example](https://www.tensorflow.org/responsible_ai/fairness_indicators/tutorials/Fairness_Indicators_TFCO_CelebA_Case_Study)&#10;goes into detail about several considerations to keep in mind while using the&#10;CelebA dataset.&#10;&#10;To use this dataset:&#10;&#10;```python&#10;import tensorflow_datasets as tfds&#10;&#10;ds = tfds.load(&#x27;celeb_a&#x27;, split=&#x27;train&#x27;)&#10;for ex in ds.take(4):&#10; print(ex)&#10;```&#10;&#10;See [the guide](https://www.tensorflow.org/datasets/overview) for more&#10;informations on [tensorflow_datasets](https://www.tensorflow.org/datasets).&#10;&#10;" />
<meta itemprop="url" content="https://www.tensorflow.org/datasets/catalog/celeb_a" />
<meta itemprop="sameAs" content="http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html" />
<meta itemprop="citation" content="@inproceedings{conf/iccv/LiuLWT15,&#10; added-at = {2018-10-09T00:00:00.000+0200},&#10; author = {Liu, Ziwei and Luo, Ping and Wang, Xiaogang and Tang, Xiaoou},&#10; biburl = {https://www.bibsonomy.org/bibtex/250e4959be61db325d2f02c1d8cd7bfbb/dblp},&#10; booktitle = {ICCV},&#10; crossref = {conf/iccv/2015},&#10; ee = {http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.425},&#10; interhash = {3f735aaa11957e73914bbe2ca9d5e702},&#10; intrahash = {50e4959be61db325d2f02c1d8cd7bfbb},&#10; isbn = {978-1-4673-8391-2},&#10; keywords = {dblp},&#10; pages = {3730-3738},&#10; publisher = {IEEE Computer Society},&#10; timestamp = {2018-10-11T11:43:28.000+0200},&#10; title = {Deep Learning Face Attributes in the Wild.},&#10; url = {http://dblp.uni-trier.de/db/conf/iccv/iccv2015.html#LiuLWT15},&#10; year = 2015&#10;}" />
Expand All @@ -12,6 +12,11 @@
# `celeb_a`


Note: This dataset has been updated since the last stable release. The new
versions and config marked with
<span class="material-icons" title="Available only in the tfds-nightly package">nights_stay</span>
are only available in the `tfds-nightly` package.

* **Visualization**:
<a class="button button-with-icon" href="https://knowyourdata-tfds.withgoogle.com/#tab=STATS&dataset=celeb_a">
Explore in Know Your Data
Expand Down Expand Up @@ -50,13 +55,14 @@ CelebA dataset.

* **Versions**:

* `2.0.0`: No release notes.
* **`2.0.1`** (default): New split API
(https://tensorflow.org/datasets/splits)
* `2.0.1`: New split API (https://tensorflow.org/datasets/splits)
* **`2.1.0`** (default)
<span class="material-icons" title="Available only in the tfds-nightly package">nights_stay</span>:
Identity feature added.

* **Download size**: `1.38 GiB`
* **Download size**: `1.39 GiB`

* **Dataset size**: `1.62 GiB`
* **Dataset size**: `1.63 GiB`

* **Auto-cached**
([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):
Expand Down Expand Up @@ -204,45 +210,11 @@ FeaturesDict({

* **Figure**
([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):

<img src="https://storage.googleapis.com/tfds-data/visualization/fig/celeb_a-2.0.1.png" alt="Visualization" width="500px">
Not supported.

* **Examples**
([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):

<!-- mdformat off(HTML should not be auto-formatted) -->

{% framebox %}

<button id="displaydataframe">Display examples...</button>
<div id="dataframecontent" style="overflow-x:auto"></div>
<script>
const url = "https://storage.googleapis.com/tfds-data/visualization/dataframe/celeb_a-2.0.1.html";
const dataButton = document.getElementById('displaydataframe');
dataButton.addEventListener('click', async () => {
// Disable the button after clicking (dataframe loaded only once).
dataButton.disabled = true;

const contentPane = document.getElementById('dataframecontent');
try {
const response = await fetch(url);
// Error response codes don't throw an error, so force an error to show
// the error message.
if (!response.ok) throw Error(response.statusText);

const data = await response.text();
contentPane.innerHTML = data;
} catch (e) {
contentPane.innerHTML =
'Error loading examples. If the error persist, please open '
+ 'a new issue.';
}
});
</script>

{% endframebox %}

<!-- mdformat on -->
Missing.

* **Citation**:

Expand Down

0 comments on commit 1728271

Please sign in to comment.