Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
SonghyunYu authored Jul 1, 2019
1 parent b90d94b commit 4731a93
Showing 1 changed file with 48 additions and 3 deletions.
51 changes: 48 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# DIDN
Pytorch Implementation of "Deep Iterative Down-Up CNN for Image Denoising". [[PDF]](http://openaccess.thecvf.com/content_CVPRW_2019/papers/NTIRE/Yu_Deep_Iterative_Down-Up_CNN_for_Image_Denoising_CVPRW_2019_paper.pdf)
Pytorch Implementation of "**Deep Iterative Down-Up CNN for Image Denoising**". [[PDF]](http://openaccess.thecvf.com/content_CVPRW_2019/papers/NTIRE/Yu_Deep_Iterative_Down-Up_CNN_for_Image_Denoising_CVPRW_2019_paper.pdf)

Our method took **second** and **third** place at each track in [[NTIRE 2019 Challenge on Real Image Denoising]](http://openaccess.thecvf.com/content_CVPRW_2019/papers/NTIRE/Abdelhamed_NTIRE_2019_Challenge_on_Real_Image_Denoising_Methods_and_Results_CVPRW_2019_paper.pdf)

Expand All @@ -16,9 +16,54 @@ If you use our work in your research or publication, please cite our work:
pytorch 1.0.0
MATLAB (for pre-processing)

## Prepare data
You need to prepare data befor training / testing the model.
Please use matlab files in './data' folder.
For training, we used [DIV2K](http://www.vision.ee.ethz.ch/~timofter/publications/Agustsson-CVPRW-2017.pdf) dataset, and only sample images are included in this project.
Please download the whole dataset for training the model.

## Test
Download Pre-trained models:[[google drive]](https://drive.google.com/open?id=1dwc6T4Kk5tjwiSFuOiogoWts55GsbMeC)
for grayscale images, gray_eval.py
for color images, color_eval.py
```
optional arguments:
--cuda : using cuda
--model : model path
--output_path : output image path
--self_ensemble : using self-ensemble
--gpus : gpu ids
You can also change test dataset in the code!
```
Example:
```
python gray_eval.py --cuda --self_ensemble
```

## Training
```
optional arguments:
--batchSize : batchsize (default: 16)
--nEpochs : number of epochs (default: 50)
--lr : initial learning rate (default: 0.0001)
--cuda : using cuda
--resume : path to checkpoint (default: none)
--start_epoch : manual starting epoch number (useful for resume, default: 1)
--threads : number of threads for data loader (default: 0)
--gpus : gpu ids
You can also change training data path and validation data path in the code!
```
Example:
```
python gray_train.py --cuda --threads 8
```

Readme will be updated soon!
## Weight ensemble
For weight ensemble, train the model multiple times manually using --resume option,
and averaging weights using 'weight_ensemble_2.py'

Download Pre-trained models: https://drive.google.com/open?id=1dwc6T4Kk5tjwiSFuOiogoWts55GsbMeC

## Contact
If you have any questions about the code or paper, please contact fkdlzmtld@gmail.com

0 comments on commit 4731a93

Please sign in to comment.