The best Amharic Large language model! Our goal is to help African businesses by using new technology in AI. By using advanced AI, this project aims to provide smooth, Amharic support across different platforms.
This repository contains scripts and instructions to fine-tune the LLaMA-2-7b-chat model for Amharic customer support using data stored in a PostgreSQL database.
llm-amharic/
├── data/
│ ├── tokenized_dataset/
│ └── load_data_to_db.py
├── docker/
│ ├── Dockerfile
│ └── docker-compose.yml
├── scripts/
│ ├── evaluate_modle.py
│ ├── inference_script.py
│ ├── tokenize_data.py
│ ├── train_model.py
│ └── train_tokenizer.py
├── utils/
│ ├── data_preprocessing.py
│ └── fetch_data_from_db.py
├── .gitignore
├── amharic.model
├── amharic.vocab
├── README.md
└── README.md
- Python 3.8+
- PostgreSQL
- CUDA-enabled GPU (optional but recommended for training)
-
Clone the repository:
git clone https://github.com/10-academy-w5-group-2/llm-amharic.git cd llm-amharic
-
Set up a virtual environment:
python3 -m venv venv source venv/bin/activate # On Windows, use `venv\Scripts\activate`
-
Install Requirements:
pip install -r requirements.txt
-
Train Tokenizer
python scripts/train_tokenizer.py
-
Fine-Tune the Model
python scripts/train_model.py
-
Evaluate the model
python scripts/evaluate_model.py
Ensure your PostgreSQL database is set up with the required data. The table should have a column containing the Amharic text data for training.
Use docker/Dockerfile to containerize and run the entire project
- Fork the repository.
- Create your feature branch (
git checkout -b feature/your-feature
). - Commit your changes (
git commit -m 'Add your feature'
). - Push to the branch (
git push origin feature/your-feature
). - Open a pull request.
This project is licensed under the MIT License.
- @abyt101 - Abraham Teka
- Melaku Alehegn
- Grace Nyutu
- Henock Kinfegebriel