forked from fengdu78/Coursera-ML-AndrewNg-Notes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path4 - 7 - Normal Equation Noninvertibility (Optional) (6 min).srt
897 lines (673 loc) · 17.7 KB
/
4 - 7 - Normal Equation Noninvertibility (Optional) (6 min).srt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
1
00:00:00,000 --> 00:00:03,162
在这段视频中我想谈谈正规方程 ( normal equation )
(字幕整理:中国海洋大学 黄海广,haiguang2000@qq.com )
2
00:00:00,000 --> 00:00:03,162
In this video, I want to talk about the normal equation
3
00:00:03,162 --> 00:00:05,212
以及它们的不可逆性
4
00:00:03,162 --> 00:00:05,212
and non-invertibility.
5
00:00:05,212 --> 00:00:07,877
尽管是一种较为深入的概念
6
00:00:05,212 --> 00:00:07,877
This is a somewhat more advanced concept,
7
00:00:07,877 --> 00:00:10,289
但总有人问我有关这方面的问题
8
00:00:07,877 --> 00:00:10,289
but it is something that I've often been asked about.
9
00:00:10,289 --> 00:00:12,711
因此 我想在这里来讨论它
10
00:00:10,289 --> 00:00:12,711
And so I wanted to talk about it here.
11
00:00:12,711 --> 00:00:14,752
由于概念较为深入
12
00:00:12,711 --> 00:00:14,752
But this is a somewhat more advanced concept,
13
00:00:14,752 --> 00:00:17,982
所以对这段可选材料大家放轻松吧
14
00:00:14,752 --> 00:00:17,982
so feel free to consider this optional material
15
00:00:17,982 --> 00:00:22,413
下面
16
00:00:17,982 --> 00:00:22,413
There's a phenomenon that you may run into
17
00:00:22,413 --> 00:00:24,416
举一个比较实用的例子
18
00:00:22,413 --> 00:00:24,416
that's maybe for some of you useful to understand.
19
00:00:24,416 --> 00:00:26,619
这是一个关于正规方程和线性回归的例子
20
00:00:24,416 --> 00:00:26,619
But even if you don't understand it,
21
00:00:26,619 --> 00:00:28,450
即使你没能理解
22
00:00:26,619 --> 00:00:28,450
the normal equation and linear regression,
23
00:00:28,450 --> 00:00:30,539
也没有关系
24
00:00:28,450 --> 00:00:30,539
you should really get that to work okay.
25
00:00:30,539 --> 00:00:33,195
问题如下
26
00:00:30,539 --> 00:00:33,195
Here's the issue:
27
00:00:33,195 --> 00:00:35,691
你或许可能对
28
00:00:33,195 --> 00:00:35,691
For those of you that are maybe somewhat
29
00:00:35,691 --> 00:00:37,876
线性代数比较熟悉
30
00:00:35,691 --> 00:00:37,876
more familar with linear algebra,
31
00:00:37,876 --> 00:00:39,884
有些同学曾经问过我
32
00:00:37,876 --> 00:00:39,884
what some students have asked me is,
33
00:00:39,884 --> 00:00:42,542
当计算
34
00:00:39,884 --> 00:00:42,542
when computing this
35
00:00:42,542 --> 00:00:45,130
θ等于inv(X'X ) X'y (注:X的转置翻译为X',下同)
36
00:00:42,542 --> 00:00:45,130
theta equals ( X<u>transpose X )<u>inverse X<u>transpose y</u></u></u>
37
00:00:45,130 --> 00:00:49,476
那对于矩阵X'X的结果是不可逆的情况呢?
38
00:00:45,130 --> 00:00:49,476
what if the matrix X<u>transpose X is non-invertible?</u>
39
00:00:49,476 --> 00:00:52,336
如果你懂一点线性代数的知识
40
00:00:49,476 --> 00:00:52,336
So, for those of you that know a bit more linear algebra
41
00:00:52,336 --> 00:00:55,171
你或许会知道
42
00:00:52,336 --> 00:00:55,171
you may know that only some matrices
43
00:00:55,171 --> 00:00:58,598
有些矩阵可逆 而有些矩阵不可逆
44
00:00:55,171 --> 00:00:58,598
are invertible and some matrices do not have an inverse
45
00:00:58,598 --> 00:01:00,540
我们称那些不可逆矩阵为
46
00:00:58,598 --> 00:01:00,540
we call those non-invertible matrices,
47
00:01:00,540 --> 00:01:04,737
奇异或退化矩阵
48
00:01:00,540 --> 00:01:04,737
singular or degenerate matrices.
49
00:01:04,737 --> 00:01:08,893
问题的重点在于X'X的不可逆的问题
50
00:01:04,737 --> 00:01:08,893
The issue or the problem of X<u>tranpose X being non-invertible</u>
51
00:01:08,893 --> 00:01:11,287
很少发生
52
00:01:08,893 --> 00:01:11,287
should happen pretty rarely.
53
00:01:11,287 --> 00:01:16,749
在Octave里 如果你用它来实现θ的计算
54
00:01:11,287 --> 00:01:16,749
And in Octave, if you implement this to compute theta,
55
00:01:16,749 --> 00:01:20,636
你将会得到正解
56
00:01:16,749 --> 00:01:20,636
it turns out that this will actually do the right thing.
57
00:01:20,636 --> 00:01:24,629
在这里我不想赘述
58
00:01:20,636 --> 00:01:24,629
I'm getting a little bit technical now and I don't want to go into details,
59
00:01:24,629 --> 00:01:28,207
在Octave里 有两个函数可以求解矩阵的逆
60
00:01:24,629 --> 00:01:28,207
but Octave has two functions for inverting matrices:
61
00:01:28,207 --> 00:01:32,146
一个被称为pinv ( ) 另一个是inv ( )
62
00:01:28,207 --> 00:01:32,146
One is called pinv(), and the other is called inv().
63
00:01:32,146 --> 00:01:36,089
这两者之间的差异是些许计算过程上的
64
00:01:32,146 --> 00:01:36,089
The differences between these two are somewhat technical.
65
00:01:36,089 --> 00:01:38,107
一个是所谓的伪逆 另一个被称为逆
66
00:01:36,089 --> 00:01:38,107
One's called the pseudo-inverse, one's called the inverse.
67
00:01:38,107 --> 00:01:42,658
使用pinv ( ) 函数可以展现数学上的过程
68
00:01:38,107 --> 00:01:42,658
You can show mathemically so as long as you use the pinv() function,
69
00:01:42,658 --> 00:01:47,145
这将计算出θ的值
70
00:01:42,658 --> 00:01:47,145
then this will actually compute the value of theta that you want,
71
00:01:47,145 --> 00:01:51,227
即便矩阵X'X是不可逆的
72
00:01:47,145 --> 00:01:51,227
even if X<u>transpose X is non-invertible.</u>
73
00:01:51,227 --> 00:01:54,095
在pinv ( ) 和 inv ( ) 之间
74
00:01:51,227 --> 00:01:54,095
The specific details between what is the difference between
75
00:01:54,095 --> 00:01:55,959
又有哪些具体区别 ?
76
00:01:54,095 --> 00:01:55,959
pinv() and what is inv()
77
00:01:55,959 --> 00:01:58,562
其中inv ( ) 引入了先进的数值计算的概念
78
00:01:55,959 --> 00:01:58,562
that is somewhat advanced numerical computing concepts,
79
00:01:58,562 --> 00:02:00,907
我真的不希望讲那些
80
00:01:58,562 --> 00:02:00,907
that I don't really want to get into.
81
00:02:00,907 --> 00:02:02,993
因此 我认为
82
00:02:00,907 --> 00:02:02,993
But I thought in this optional
83
00:02:02,993 --> 00:02:04,672
可以试着给你一点点直观的参考
84
00:02:02,993 --> 00:02:04,672
video I try to give you a little bit of intuition
85
00:02:04,672 --> 00:02:08,823
关于矩阵X'X的不可逆的问题
86
00:02:04,672 --> 00:02:08,823
about what it means that X<u>transpose X to be non-invertible.</u>
87
00:02:08,823 --> 00:02:12,108
如果你懂一点线性代数
88
00:02:08,823 --> 00:02:12,108
For those of you that know a bit more linear algebra
89
00:02:12,108 --> 00:02:13,556
或许你可能会感兴趣
90
00:02:12,108 --> 00:02:13,556
and might be interested.
91
00:02:13,556 --> 00:02:15,948
我不会从数学的角度来证明它
92
00:02:13,556 --> 00:02:15,948
I'm not going to proove this mathematically,
93
00:02:15,948 --> 00:02:18,684
但如果矩阵X'X结果是不可逆的
94
00:02:15,948 --> 00:02:18,684
but if X<u>transpose X is non-invertible,</u>
95
00:02:18,684 --> 00:02:22,596
通常有两种最常见的原因
96
00:02:18,684 --> 00:02:22,596
there are usually two most common causes:
97
00:02:22,596 --> 00:02:26,238
第一个原因是 如果不知何故 在你的学习问题
98
00:02:22,596 --> 00:02:26,238
The first cause is if somehow, in your learning problem,
99
00:02:26,238 --> 00:02:28,461
你有多余的功能
100
00:02:26,238 --> 00:02:28,461
you have redundant features,
101
00:02:28,461 --> 00:02:30,844
例如 在预测住房价格时
102
00:02:28,461 --> 00:02:30,844
concretely, if you try to predict housing prices
103
00:02:30,844 --> 00:02:34,877
如果x1是以英尺为尺寸规格计算的房子
104
00:02:30,844 --> 00:02:34,877
and if x<u>1 is the size of a house in square-feet,</u>
105
00:02:34,877 --> 00:02:37,792
x2是以平方米为尺寸规格计算的房子
106
00:02:34,877 --> 00:02:37,792
and x<u>2 is the size of the house in square-meters,</u>
107
00:02:37,792 --> 00:02:46,071
同时 你也知道1米等于3 28英尺 ( 四舍五入到两位小数 )
108
00:02:37,792 --> 00:02:46,071
then, you know, 1 meter is equal to 3.28 feet, rounded to two decimals,
109
00:02:46,071 --> 00:02:48,947
这样 你的这两个特征值将始终满足约束
110
00:02:46,071 --> 00:02:48,947
and so your two features will always satisfy the constraint
111
00:02:48,947 --> 00:02:55,378
x1等于x2倍的3.28平方
112
00:02:48,947 --> 00:02:55,378
that x<u>1 equals 3(.28)^2 times x<u>2.</u></u>
113
00:02:55,378 --> 00:02:59,107
并且你可以将这过程显示出来 讲到这里 可能 或许对你来说有点难了
114
00:02:55,378 --> 00:02:59,107
And you can show, for those of you - this is somehwat advanced linear algebra now,
115
00:02:59,107 --> 00:03:01,169
但如果你在线性代数上非常熟练
116
00:02:59,107 --> 00:03:01,169
but if you're an expert in linear algebra,
117
00:03:01,169 --> 00:03:05,275
实际上 你可以用这样的一个线性方程 来展示那两个相关联的特征值
118
00:03:01,169 --> 00:03:05,275
you can actually show that if your two features are related via a linear equation like this,
119
00:03:05,275 --> 00:03:09,095
矩阵X'X将是不可逆的
120
00:03:05,275 --> 00:03:09,095
then matrix X<u>transpose X will be non-invertible.</u>
121
00:03:09,095 --> 00:03:13,320
第二个原因是 在你想用大量的特征值
122
00:03:09,095 --> 00:03:13,320
The second thing that can cause X<u>transpose X to be non-invertible</u>
123
00:03:13,320 --> 00:03:17,043
尝试实践你的学习算法的时候
124
00:03:13,320 --> 00:03:17,043
is if you're trying to run a learning algorithm
125
00:03:17,043 --> 00:03:18,850
可能会导致矩阵X'X的结果是不可逆的
126
00:03:17,043 --> 00:03:18,850
with a <i>lot</i> of a features.
127
00:03:18,850 --> 00:03:23,035
具体地说 在m小于或等于n的时候
128
00:03:18,850 --> 00:03:23,035
Concretely, if m is less than or equal to n.
129
00:03:23,035 --> 00:03:27,723
例如 有m等于10个的训练实例
130
00:03:23,035 --> 00:03:27,723
For example, if you imagine that you have m equals 10 training examples
131
00:03:27,723 --> 00:03:31,192
也有n等于100的特征数量
132
00:03:27,723 --> 00:03:31,192
and that you have n equals 100 features, then you're trying
133
00:03:31,192 --> 00:03:36,829
要找到适合的 ( n +1 ) 维参数矢量θ 这是第
134
00:03:31,192 --> 00:03:36,829
to fit a parameter vector theta, which is (n+1)-dimensional,
135
00:03:36,829 --> 00:03:39,308
这将会变成一个101维的矢量
136
00:03:36,829 --> 00:03:39,308
so it's a 101-dimensional
137
00:03:39,308 --> 00:03:43,602
尝试从10个训练实例中找到满足101个参数的值
138
00:03:39,308 --> 00:03:43,602
you're trying to fit a 101 parameters from just 10 training examples.
139
00:03:43,602 --> 00:03:46,899
这工作可能会让你花上一阵子时间
140
00:03:43,602 --> 00:03:46,899
And this turns out to sometimes work,
141
00:03:46,899 --> 00:03:49,078
但这并不总是一个好主意
142
00:03:46,899 --> 00:03:49,078
but to not always be a good idea.
143
00:03:49,078 --> 00:03:52,212
因为 正如我们所看到 你只有10个例子 以适应这100或101个参数
144
00:03:49,078 --> 00:03:52,212
Because, as we see later, you might not have enough data
145
00:03:52,212 --> 00:03:58,432
数据还是有些少
146
00:03:52,212 --> 00:03:58,432
if you only have 10 examples to fit 100 or 101 parameters.
147
00:03:58,432 --> 00:04:01,924
稍后我们将看到
148
00:03:58,432 --> 00:04:01,924
We'll see later in this course, why this might be too little data
149
00:04:01,924 --> 00:04:04,418
如何使用小数据样本以得到这100或101个参数
150
00:04:01,924 --> 00:04:04,418
to fit this many parameters.
151
00:04:04,418 --> 00:04:07,544
通常 我们会使用一种叫做正则化的线性代数方法
152
00:04:04,418 --> 00:04:07,544
But commonly, what we do then if m is less than n,
153
00:04:07,544 --> 00:04:12,513
通过删除某些特征或者是使用某些技术
154
00:04:07,544 --> 00:04:12,513
is to see if we can either delete some features or to use a technique
155
00:04:12,513 --> 00:04:14,689
来解决当m比n小的时候的问题
156
00:04:12,513 --> 00:04:14,689
called regularization,
157
00:04:14,689 --> 00:04:17,477
这也是在本节课后面要讲到的内容
158
00:04:14,689 --> 00:04:17,477
which is something that we will talk about a bit later in this course as well,
159
00:04:17,477 --> 00:04:21,905
即使你有一个相对较小的训练集
160
00:04:17,477 --> 00:04:21,905
that will kind of let you fit a <i>lot</i> of parameters using a <i>lot</i> of features
161
00:04:21,905 --> 00:04:24,117
也可使用很多的特征来找到很多合适的参数
162
00:04:21,905 --> 00:04:24,117
even if you have a relatively small training set.
163
00:04:24,117 --> 00:04:27,698
有关正规化的内容将是本节之后课程的话题
164
00:04:24,117 --> 00:04:27,698
But this regularization will be a later topic in this course.
165
00:04:27,698 --> 00:04:32,628
总之当你发现的矩阵X'X的结果是奇异矩阵
166
00:04:27,698 --> 00:04:32,628
But to summarize, if ever you find that X<u>transpose X is singular</u>
167
00:04:32,628 --> 00:04:35,877
或者找到的其它矩阵是不可逆的
168
00:04:32,628 --> 00:04:35,877
or alternatively find is non-invertible,
169
00:04:35,877 --> 00:04:38,380
我会建议你这么做
170
00:04:35,877 --> 00:04:38,380
what I would recommend you do is
171
00:04:38,380 --> 00:04:42,016
首先 看特征值里是否有一些多余的特征
172
00:04:38,380 --> 00:04:42,016
first: look at your features and see if you have redundant features
173
00:04:42,016 --> 00:04:45,304
像这些x1和x2是线性相关的
174
00:04:42,016 --> 00:04:45,304
like these x<u>1 and x<u>2 being linearly dependent,</u></u>
175
00:04:45,304 --> 00:04:48,017
或像这样 互为线性函数
176
00:04:45,304 --> 00:04:48,017
or being a linear function of each other, like so
177
00:04:48,017 --> 00:04:49,841
同时 当有一些多余的特征时
178
00:04:48,017 --> 00:04:49,841
and if you do have redundant features and
179
00:04:49,841 --> 00:04:51,493
可以删除这两个重复特征里的其中一个
180
00:04:49,841 --> 00:04:51,493
if you just delete one of these features -
181
00:04:51,493 --> 00:04:53,724
无须两个特征同时保留
182
00:04:51,493 --> 00:04:53,724
you really don't need both of these features,
183
00:04:53,724 --> 00:04:55,601
所以 发现多余的特征删除二者其一
184
00:04:53,724 --> 00:04:55,601
so if you just delete one of these features
185
00:04:55,601 --> 00:04:58,586
将解决不可逆性的问题
186
00:04:55,601 --> 00:04:58,586
that will solve your non-invertibility problem
187
00:04:58,586 --> 00:05:02,655
因此 首先应该通过观察所有特征检查是否有多余的特征
188
00:04:58,586 --> 00:05:02,655
and, so first think through my features and check if any are redundant
189
00:05:02,655 --> 00:05:05,481
如果有多余的就删除掉
190
00:05:02,655 --> 00:05:05,481
and if so, then, you know, keep deleting the redundant features
191
00:05:05,481 --> 00:05:07,659
直到他们不再是多余的为止
192
00:05:05,481 --> 00:05:07,659
until they are no longer redundant.
193
00:05:07,659 --> 00:05:09,799
如果特征里没有多余的
194
00:05:07,659 --> 00:05:09,799
And if your features are non redundant,
195
00:05:09,799 --> 00:05:11,939
我会检查是否有过多的特征
196
00:05:09,799 --> 00:05:11,939
I would check if I might have too many features,
197
00:05:11,939 --> 00:05:13,638
如果特征数量实在太多
198
00:05:11,939 --> 00:05:13,638
and if that's the case I would either
199
00:05:13,638 --> 00:05:16,140
我会删除些 用较少的特征来反映尽可能多内容
200
00:05:13,638 --> 00:05:16,140
delete some features if I can bare to use fewer features,
201
00:05:16,140 --> 00:05:20,708
否则我会考虑使用正规化方法
202
00:05:16,140 --> 00:05:20,708
or else I would consider using regularization,
203
00:05:20,708 --> 00:05:22,821
这也是我们将要谈论的话题
204
00:05:20,708 --> 00:05:22,821
which is this topic that we will talk about later.
205
00:05:22,821 --> 00:05:27,877
同时 这也是有关标准方程的内容
206
00:05:22,821 --> 00:05:27,877
So, that's it for the normal equation and what it means
207
00:05:27,877 --> 00:05:31,885
如果矩阵X'X是不可逆的
208
00:05:27,877 --> 00:05:31,885
if the matrix X<u>transpose X is non-invertible.</u>
209
00:05:31,885 --> 00:05:35,710
通常来说 不会出现这种情况
210
00:05:31,885 --> 00:05:35,710
But this is a problem that hopefully you run into pretty rarely.
211
00:05:35,710 --> 00:05:40,554
如果在Octave里
212
00:05:35,710 --> 00:05:40,554
And if you just implement it in Octave using the pinv() function
213
00:05:40,554 --> 00:05:42,853
可以用伪逆函数pinv ( ) 来实现
214
00:05:40,554 --> 00:05:42,853
which is called the pseudo-inverse function
215
00:05:42,853 --> 00:05:46,700
这种使用不同的线性代数库的方法被称为伪逆
216
00:05:42,853 --> 00:05:46,700
so you use a different linear algebra library, that is called pseudo-inverse
217
00:05:46,700 --> 00:05:50,071
即使X'X的结果是不可逆的
218
00:05:46,700 --> 00:05:50,071
but that implementation should just do the right thing
219
00:05:50,071 --> 00:05:52,582
但算法执行的流程是正确的
220
00:05:50,071 --> 00:05:52,582
even if X<u>transpose X is non-invertible</u>
221
00:05:52,582 --> 00:05:55,198
总之 出现不可逆矩阵的情况极少发生
222
00:05:52,582 --> 00:05:55,198
which should happen pretty rarily anyway
223
00:05:55,198 --> 99:59:59,000
所以在大多数实现线性回归中 出现不可逆的问题不应该过多的关注
224
00:05:55,198 --> 99:59:59,000
so this should not be a problem for most implementations of linear regression.