forked from fengdu78/Coursera-ML-AndrewNg-Notes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path16 - 1 - Problem Formulation (8 min).srt
1207 lines (964 loc) · 22.3 KB
/
16 - 1 - Problem Formulation (8 min).srt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1
00:00:00,080 --> 00:00:01,060
In this next set of
在接下来的视频中,(字幕翻译:仇利克,中国海洋大学)
2
00:00:01,180 --> 00:00:01,970
videos, I would like to
我想
3
00:00:02,300 --> 00:00:03,700
tell you about recommender systems.
讲一下推荐系统。
4
00:00:04,730 --> 00:00:05,810
There are two reasons, I had
有两个原因,我想讲
5
00:00:05,940 --> 00:00:08,590
two motivations for why I wanted to talk about recommender systems.
推荐系统有两个原因
6
00:00:09,640 --> 00:00:10,670
The first is just that it
第一,仅仅因为它是
7
00:00:10,830 --> 00:00:13,830
is an important application of machine learning.
机器学习中的一个重要的应用。
8
00:00:14,160 --> 00:00:15,680
Over the last few years, occasionally I
在过去几年,我偶尔
9
00:00:15,810 --> 00:00:16,840
visit different, you know, technology
访问硅谷不同的技术公司,
10
00:00:17,510 --> 00:00:18,720
companies here in Silicon Valley
11
00:00:18,820 --> 00:00:20,040
and I often talk to people
我常和工作在这儿
12
00:00:20,390 --> 00:00:21,270
working on machine learning applications there
致力于机器学习应用的人们聊天,
13
00:00:21,370 --> 00:00:23,010
and so I've asked
我常问
14
00:00:23,200 --> 00:00:24,120
people what are the most
他们,最重要的
15
00:00:24,260 --> 00:00:26,840
important applications of machine
机器学习的应用是什么,
16
00:00:27,450 --> 00:00:28,530
learning or what are the machine
或者,你最想改进的
17
00:00:28,550 --> 00:00:29,520
learning applications that you would most like to get
机器学习应用
18
00:00:29,790 --> 00:00:31,130
an improvement in the performance of.
有哪些。
19
00:00:31,890 --> 00:00:32,690
And one of the most frequent
我最常听到的
20
00:00:33,020 --> 00:00:34,240
answers I heard was that
答案是
21
00:00:34,590 --> 00:00:35,710
there are many groups out in Silicon
现在,在硅谷有很多团体
22
00:00:36,020 --> 00:00:38,250
Valley now, trying to build better recommender systems.
试图建立很好的推荐系统。
23
00:00:39,570 --> 00:00:40,460
So, if you think about
因此,如果你考虑
24
00:00:40,800 --> 00:00:42,390
what the websites are
网站是什么
25
00:00:42,540 --> 00:00:44,100
like Amazon, or what Netflix
像亚马逊,或网飞公司
26
00:00:44,840 --> 00:00:46,100
or what eBay, or what
或易趣,或
27
00:00:46,830 --> 00:00:48,230
iTunes Genius, made by Apple
iTunes Genius,苹果开发的,
28
00:00:48,480 --> 00:00:49,450
does, there are many websites
有很多的网站
29
00:00:50,050 --> 00:00:51,520
or systems that try to
或系统试图
30
00:00:51,670 --> 00:00:53,140
recommend new products to use.
推荐新产品给用户。
31
00:00:53,360 --> 00:00:54,380
So, Amazon recommends new books
因此,亚马逊推荐新书
32
00:00:54,630 --> 00:00:55,840
to you, Netflix try to recommend
给你,网飞公司试图推荐
33
00:00:56,230 --> 00:00:58,090
new movies to you, and so on.
新电影给你,等等。
34
00:00:58,430 --> 00:00:59,560
And these sorts of recommender systems,
这些推荐系统,
35
00:01:00,130 --> 00:01:01,480
that look at what books you
浏览你过去
36
00:01:01,560 --> 00:01:02,430
may have purchased in the past,
买过什么书,
37
00:01:02,890 --> 00:01:03,820
or what movies you have rated
或过去评价过什么电影,
38
00:01:04,010 --> 00:01:05,100
in the past, but these are
但是,
39
00:01:05,140 --> 00:01:06,390
the systems that are responsible
这些系统会带来
40
00:01:07,470 --> 00:01:09,410
for today, a substantial fraction of
很大一部分收入
41
00:01:09,620 --> 00:01:10,630
Amazon's revenue and for a
为亚马逊和
42
00:01:10,710 --> 00:01:12,520
company like Netflix, the recommendations
像网飞这样的公司,
43
00:01:13,950 --> 00:01:14,710
that they make to the users
给用户推荐的电影
44
00:01:15,180 --> 00:01:16,610
is also responsible for a
也占据了
45
00:01:16,830 --> 00:01:18,250
substantial fraction of the movies
用户所看电影的一大部分。
46
00:01:18,520 --> 00:01:20,700
watched by their users.
And so an
因此,
47
00:01:20,780 --> 00:01:22,410
improvement in performance of
对推荐系统性能的改善
48
00:01:22,520 --> 00:01:24,070
a recommender system can have
49
00:01:24,680 --> 00:01:26,340
a substantial and immediate
将对这些企业的
50
00:01:26,880 --> 00:01:28,010
impact on the bottom line of
底线有实质性和直接的影响。
51
00:01:28,370 --> 00:01:31,380
many of these
52
00:01:31,710 --> 00:01:32,660
companies. Recommender systems is kind of a funny
推荐系统是个有趣的问题,
53
00:01:32,870 --> 00:01:34,530
problem, within academic machine
在学术机器学习中
54
00:01:34,870 --> 00:01:35,890
learning so that we could
因此,我们
55
00:01:35,980 --> 00:01:37,230
go to an academic machine learning conference,
可以去参加一个学术机器学习会议,
56
00:01:38,430 --> 00:01:39,950
the problem of recommender systems,
推荐系统问题
57
00:01:40,190 --> 00:01:41,560
actually receives relatively little attention,
实际上受到很少的关注,
58
00:01:42,430 --> 00:01:43,680
or at least it's sort of a smaller
或者,至少在学术界
59
00:01:43,960 --> 00:01:46,200
fraction of what goes on within Academia.
它占了很小的份额。
60
00:01:47,140 --> 00:01:48,010
But if you look at what's happening,
但是,如果你看正在发生的事情,
61
00:01:48,570 --> 00:01:50,200
many technology companies, the ability
许多有能力构建这些系统的科技企业,
62
00:01:50,700 --> 00:01:53,500
to build these systems seems to be a high priority for many companies.
他们似乎在很多企业中占据很高的优先级。
63
00:01:54,430 --> 00:01:56,460
And that's one of the reasons why I want to talk about them in this class.
这是我为什么在这节课讨论它的原因之一。
64
00:01:58,280 --> 00:01:59,420
The second reason that I
我想讨论推荐系统地第二个原因是
65
00:01:59,520 --> 00:02:00,570
want to talk about recommender systems
66
00:02:01,170 --> 00:02:02,460
is that as we approach
67
00:02:02,910 --> 00:02:04,080
the last few sets of videos
这个班视频的最后几集
68
00:02:05,120 --> 00:02:06,300
of this class I wanted to talk about
我想讨论
69
00:02:06,700 --> 00:02:07,740
a few of the big ideas
机器学习中的一些大思想
70
00:02:08,410 --> 00:02:09,410
in machine learning and share with you,
并和大家分享,
71
00:02:09,510 --> 00:02:11,560
you know, some of the big ideas in machine learning.
你知道的,机器学习中的一些大思想。
72
00:02:12,400 --> 00:02:13,840
And we've already seen
这节课我们也看到了,
73
00:02:14,070 --> 00:02:15,870
in this class that features are
对机器学习来说,特征是
74
00:02:15,990 --> 00:02:17,000
important for machine learning, the
很重要的,
75
00:02:17,640 --> 00:02:19,170
features you choose will have
你所选择的特征
76
00:02:19,400 --> 00:02:22,340
a big effect on the performance of your learning algorithm.
将对你学习算法的性能有很大的影响。
77
00:02:23,290 --> 00:02:24,320
So there's this big idea in machine
因此,在机器学习中有一种大思想,
78
00:02:24,620 --> 00:02:25,890
learning, which is that for
它针对一些问题,
79
00:02:25,990 --> 00:02:27,630
some problems, maybe not
可能并不是
80
00:02:27,790 --> 00:02:29,690
all problems, but some problems, there
所有的问题,而是一些问题,
81
00:02:29,910 --> 00:02:31,610
are algorithms that can try
有算法可以为你
82
00:02:31,950 --> 00:02:34,860
to automatically learn a good set of features for you.
自动学习一套好的特征。
83
00:02:35,210 --> 00:02:35,970
So rather than trying to hand
因此,不要试图手动设计,
84
00:02:36,660 --> 00:02:37,840
design, or hand code the
或手写代码
85
00:02:38,100 --> 00:02:39,120
features, which is mostly what we've
这是目前为止我们常干的,
86
00:02:39,340 --> 00:02:40,350
been doing so far, there are a
87
00:02:40,430 --> 00:02:41,790
few settings where you might
有一些设置,你可以
88
00:02:42,050 --> 00:02:42,650
be able to have an
有一个算法,
89
00:02:42,770 --> 00:02:43,780
algorithm, just to learn what feature to
仅仅学习其使用的特征,
90
00:02:43,920 --> 00:02:45,200
use, and the recommender
推荐系统
91
00:02:45,580 --> 00:02:47,690
systems is just one example of that sort of setting.
就是类型设置的一个例子。
92
00:02:47,880 --> 00:02:49,250
There are many others, but engraved
还有很多其它的,但是
93
00:02:49,690 --> 00:02:51,150
through recommender systems, will be
通过推荐系统,我们将
94
00:02:51,320 --> 00:02:52,770
able to go a little
领略一小部分
95
00:02:53,090 --> 00:02:54,380
bit into this idea of learning
特征学习的思想,
96
00:02:54,710 --> 00:02:56,450
the features and you'll be
至少,你将能够
97
00:02:56,540 --> 00:02:57,320
able to see at least one example
了解到这方面的一个例子,
98
00:02:58,170 --> 00:03:00,120
of this, I think, big idea in machine learning as well.
我认为,机器学习中的大思想也是这样。
99
00:03:01,220 --> 00:03:02,800
So, without further ado, let's
因此,让我们
100
00:03:02,990 --> 00:03:04,220
get started, and talk
开始讨论
101
00:03:04,400 --> 00:03:06,120
about the recommender system problem formulation.
推荐系统问题公式化。
102
00:03:08,110 --> 00:03:09,690
As my running example, I'm
接下来的例子,我将
103
00:03:09,870 --> 00:03:11,210
going to use the
用
104
00:03:11,390 --> 00:03:13,230
modern problem of predicting movie ratings.
电影评级预测现代问题。
105
00:03:14,150 --> 00:03:14,640
So, here's a problem.
因此,这是一个问题。
106
00:03:15,100 --> 00:03:16,520
Imagine that you're a
假设你是一个
107
00:03:16,660 --> 00:03:18,140
website or a company that
网站或者公司
108
00:03:18,910 --> 00:03:21,340
sells or rents out movies, or what have you.
出售或者出租电影,或者诸如此类。
109
00:03:21,560 --> 00:03:22,880
And so, you know, Amazon, and Netflix, and
因此,你知道,亚马逊、网飞公司和
110
00:03:23,610 --> 00:03:24,930
I think iTunes are all examples
iTunes都是做这个的
111
00:03:26,540 --> 00:03:28,180
of companies that do this,
公司。
112
00:03:28,750 --> 00:03:30,450
and let's say you let
比方说,你让
113
00:03:30,930 --> 00:03:32,610
your users rate different movies,
你的用户评价不同的电影,
114
00:03:33,560 --> 00:03:34,130
using a 1 to 5 star rating.
用1到5星级评价。
115
00:03:34,560 --> 00:03:36,300
So, users may, you know,
因此,用户可能,你知道,
116
00:03:36,400 --> 00:03:39,070
something one, two, three, four or five stars.
评定一星、二星、三星、四星或五星。
117
00:03:40,420 --> 00:03:41,440
In order to make this example
为了让这个例子
118
00:03:41,980 --> 00:03:43,170
just a little bit nicer, I'm
更完善一点,我
119
00:03:43,360 --> 00:03:44,860
going to allow 0 to
将允许0到
120
00:03:45,180 --> 00:03:46,720
5 stars as well,
5星级,
121
00:03:47,300 --> 00:03:49,170
because that just makes some of the math come out just nicer.
这只是让数字呈现的更好一些。
122
00:03:49,360 --> 00:03:51,580
Although most of these websites use the 1 to 5 star scale.
虽然大多数网站使用1到5星级评价。
123
00:03:53,000 --> 00:03:54,520
So here, I have 5 movies.
这里,我有5部电影。
124
00:03:55,110 --> 00:03:56,600
You know, Love That
你们知道的,Love That
125
00:03:56,710 --> 00:03:58,050
Lasts, Romance Forever, Cute Puppies of
Lasts, Romance Forever, Cute Puppies of
126
00:03:58,160 --> 00:04:00,230
Love, Nonstop Car Chases,
Love, Nonstop Car Chases,
127
00:04:01,040 --> 00:04:03,340
and Swords vs. Karate.
and Swords vs. Karate.
128
00:04:03,550 --> 00:04:04,380
And we have 4 users, which,
我们有4个用户,
129
00:04:05,020 --> 00:04:06,190
calling, you know, Alice, Bob, Carol,
他们分别是Alice, Bob, Carol,
130
00:04:06,410 --> 00:04:07,610
and Dave, with initials A, B,
和Dave,名字首字母分别是A, B,
131
00:04:07,690 --> 00:04:09,790
C, and D, we'll call them users 1, 2, 3, and 4.
C和D,我们称呼他们用户1,2,3和用户4.
132
00:04:10,390 --> 00:04:11,940
So, let's say Alice really
比如说Alice喜欢
133
00:04:12,190 --> 00:04:13,360
likes Love That Lasts and
Love That Lasts并
134
00:04:13,460 --> 00:04:15,680
rates that 5 stars, likes Romance
给其评价5星,Romance
135
00:04:16,070 --> 00:04:17,220
Forever, rates it 5 stars.
Forever,评价5星。
136
00:04:18,060 --> 00:04:19,050
She did not watch Cute Puppies
她并没有看过Cute Puppies
137
00:04:19,370 --> 00:04:20,810
of Love, and did rate it, so we
of Love,没有进行评价,因此,我们
138
00:04:20,950 --> 00:04:22,190
don't have a rating for that,
并没有这部电影的星级评价,
139
00:04:23,120 --> 00:04:24,400
and Alice really did not
Alice 并不喜欢
140
00:04:24,590 --> 00:04:27,170
like Nonstop Car Chases or
Nonstop Car Chases或者
141
00:04:27,240 --> 00:04:29,330
Swords vs. Karate. And a different user
Swords vs. Karate. 另一个用户
142
00:04:29,720 --> 00:04:31,390
Bob, user two, maybe rated
Bob,用户2,可能评级
143
00:04:31,630 --> 00:04:32,680
a different set of movies, maybe
一些不同的电影,可能
144
00:04:32,850 --> 00:04:33,580
she likes to Love at Last,
他喜欢Love at Last,
145
00:04:34,300 --> 00:04:35,520
did not to watch Romance Forever,
并没有看过Romance Forever,
146
00:04:36,130 --> 00:04:37,960
just have a rating of 4, a 0,
仅仅评了一个4星,一个0星,
147
00:04:38,360 --> 00:04:42,530
a 0, and maybe our 3rd user,
可能第三个用户,
148
00:04:43,170 --> 00:04:44,280
rates this 0, did not watch
评价它为0星,并没有看过
149
00:04:44,550 --> 00:04:45,610
that one, 0, 5, 5, and, you know, let's just
那部电影,0, 5, 5,你知道的,让我们仅仅
150
00:04:45,980 --> 00:04:48,150
fill in some of the numbers.
用一些数字填满。
151
00:04:52,150 --> 00:04:53,910
And so just to introduce a
下面介绍一些
152
00:04:53,970 --> 00:04:55,090
bit of notation, this notation
符号,这些符号
153
00:04:55,600 --> 00:04:57,200
that we'll be using throughout, I'm going
我们将一直使用,我将
154
00:04:57,400 --> 00:04:59,650
to use NU to denote the number of users.
用NU表示用户的数量。
155
00:05:00,260 --> 00:05:02,800
So in this example, NU will be equal to 4.
因此,在这个例子中,NU=4。
156
00:05:03,550 --> 00:05:04,750
So the u-subscript stands for
u的下标表示
157
00:05:05,040 --> 00:05:07,290
users and Nm,
用户数,Nm
158
00:05:07,770 --> 00:05:08,900
going to use to denote the number
用来表示电影的数量,
159
00:05:09,090 --> 00:05:11,210
of movies, so here I have five movies
这里我有5部电影,
160
00:05:11,610 --> 00:05:12,960
so Nm equals equals 5.
因此Nm=5.
161
00:05:13,320 --> 00:05:15,320
And you know for this example, I have
这个例子你知道的,
162
00:05:15,950 --> 00:05:17,640
for this example, I have loosely
我有
163
00:05:18,920 --> 00:05:20,440
3 maybe romantic or
3部浪漫或
164
00:05:20,700 --> 00:05:24,020
romantic comedy movies and 2
浪漫喜剧和2部
165
00:05:24,260 --> 00:05:25,750
action movies and you know, if
动作片,
166
00:05:25,960 --> 00:05:27,460
you look at this small example, it
你看这个小例子,它
167
00:05:27,580 --> 00:05:29,430
looks like Alice and Bob are
看起来像是Alice和 Bob
168
00:05:29,550 --> 00:05:31,360
giving high ratings to these
评了高星级给这些
169
00:05:32,170 --> 00:05:33,650
romantic comedies or movies
浪漫喜剧或者关于爱情的电影,
170
00:05:33,960 --> 00:05:34,850
about love, and giving very
给动作片非常
171
00:05:35,140 --> 00:05:36,790
low ratings about the action
低的评价,
172
00:05:37,060 --> 00:05:39,470
movies, and for Carol and Dave, it's the opposite, right?
Carol 和 Dave,他们的评价是相反的,对吗?
173
00:05:39,620 --> 00:05:40,800
Carol and Dave, users three
Carol 和 Dave,用户3和4,
174
00:05:41,010 --> 00:05:42,170
and four, really like the
喜欢
175
00:05:42,350 --> 00:05:43,390
action movies and give them
动作片并给它们
176
00:05:43,490 --> 00:05:45,020
high ratings, but don't like
高星级,但是不喜欢
177
00:05:45,510 --> 00:05:46,910
the romance and love-
浪漫剧和
178
00:05:47,060 --> 00:05:48,440
type movies as much.
爱情剧。
179
00:05:50,330 --> 00:05:51,720
Specifically, in the recommender system
尤其在推荐系统问题中,
180
00:05:52,120 --> 00:05:54,170
problem, we are given the following data.
我们给定下面数据,
181
00:05:54,700 --> 00:05:56,230
Our data comprises the following:
我们的数据组成如下:
182
00:05:56,390 --> 00:05:58,780
we have these values r(i, j), and
我们有值r(i, j),
183
00:05:58,910 --> 00:06:00,080
r(i, j) is 1 if user
r(i, j)=1,如果用户
184
00:06:00,350 --> 00:06:01,580
J has rated movie I.
j给电影i进行了评价。
185
00:06:01,950 --> 00:06:02,920
So our users rate only
因此,用户仅仅给
186
00:06:03,180 --> 00:06:04,200
some of the movies, and so,
某些电影评价,诸如此类。
187
00:06:04,820 --> 00:06:06,050
you know, we don't have
你知道,我们没有
188
00:06:06,190 --> 00:06:08,140
ratings for those movies.
对这些电影进行评价。
189
00:06:08,310 --> 00:06:09,890
And whenever r(i, j) is equal
r(i, j)等于1,仅当
190
00:06:10,450 --> 00:06:11,790
to 1, whenever user j has
用户j
191
00:06:11,980 --> 00:06:13,150
rated movie i, we also
给电影i进行了评价。我们也
192
00:06:13,660 --> 00:06:15,310
get this number y(i, j),
得到值y(i, j),
193
00:06:16,090 --> 00:06:17,520
which is the rating given by
它是用户j给电影i的评级。
194
00:06:17,740 --> 00:06:18,870
user j to movie i. And
195
00:06:19,030 --> 00:06:20,370
so, y(i, j) would be
因此,y(i, j)是一个
196
00:06:20,540 --> 00:06:22,890
a number from zero to
从0到5的数字,
197
00:06:23,090 --> 00:06:24,360
five, depending on the star
依赖星级评定,
198
00:06:24,790 --> 00:06:25,810
rating, zero to five
用户给
199
00:06:26,160 --> 00:06:28,470
stars that user gave that particular movie.
特定电影评价0到5,五个星级。
200
00:06:30,240 --> 00:06:31,700
So, the recommender system problem
因此,推荐系统问题
201
00:06:32,200 --> 00:06:33,540
is given this data
给出了这个数据
202