forked from fengdu78/Coursera-ML-AndrewNg-Notes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path15 - 2 - Gaussian Distribution (10 min).srt
1481 lines (1185 loc) · 26.6 KB
/
15 - 2 - Gaussian Distribution (10 min).srt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1
00:00:00,240 --> 00:00:01,410
In this video, I'd like to
在这个视频中
(字幕整理:中国海洋大学 黄海广,haiguang2000@qq.com )
2
00:00:01,560 --> 00:00:03,590
talk about the Gaussian distribution, which
我将介绍高斯分布
3
00:00:03,830 --> 00:00:05,810
is also called the normal distribution.
也称为正态分布
4
00:00:07,430 --> 00:00:08,940
In case you're already intimately
如果你已经
5
00:00:09,620 --> 00:00:11,980
familiar with the Gaussian distribution, it is
对高斯分布非常熟悉了
6
00:00:12,160 --> 00:00:13,810
probably okay to skip this video.
那么也许你可以直接跳过这段视频
7
00:00:14,640 --> 00:00:15,890
But if you're not sure or
但是 如果你不确定
8
00:00:15,970 --> 00:00:16,890
if it's been a while since you've
或者你已经有段时间
9
00:00:17,040 --> 00:00:18,770
worked with a Gaussian distribution or the normal
没有接触高斯分布
10
00:00:19,020 --> 00:00:20,480
distribution then please do
或者正态分布了
11
00:00:20,610 --> 00:00:22,960
watch this video all the way to the end.
那么 请从头到尾看完这段视频
12
00:00:23,220 --> 00:00:24,260
And in the video after this,
在下一个视频中
13
00:00:24,480 --> 00:00:25,740
we'll start applying the Gaussian
我们将应用高斯分布
14
00:00:25,980 --> 00:00:28,890
distribution to developing an anomaly detection algorithm.
来推导一套异常检测算法
15
00:00:31,990 --> 00:00:33,310
Let's say x is a
假设x是一个
16
00:00:33,540 --> 00:00:36,470
real value random variable, so x is a real number.
实数随机变量 因此x是一个实数
17
00:00:37,380 --> 00:00:39,080
If the probability distribution of
如果x的概率分布
18
00:00:39,270 --> 00:00:41,160
x is Gaussian, it
服从高斯分布
19
00:00:41,400 --> 00:00:42,710
would mean Mu and variant
其中均值为μ
20
00:00:43,110 --> 00:00:45,360
sigma squared, then we'll
方差为σ平方
21
00:00:45,540 --> 00:00:47,600
write this as x the
那么将它记作
22
00:00:47,690 --> 00:00:49,270
random variable tilde.
随机变量x 波浪号
23
00:00:51,930 --> 00:00:53,300
That's this little tilde
这个小小的波浪号
24
00:00:53,540 --> 00:00:59,520
as distributed as and then
读作 服从...分布
25
00:00:59,730 --> 00:01:01,550
to denote the Gaussian Distribution, sometimes
为了表示高斯分布
26
00:01:02,070 --> 00:01:03,930
you're going to write script n, parentheses
有时你将使用大写字母N
27
00:01:04,830 --> 00:01:07,140
Mu, sigma squared.
括号μ σ平方
28
00:01:07,470 --> 00:01:09,310
So, this script's end stands for
因此这个大写字母N表示
29
00:01:09,530 --> 00:01:10,920
normal, since Gaussian and normal
Normal (正态)
30
00:01:11,300 --> 00:01:12,170
distribution, they mean the same
因为高斯分布就是正态分布
31
00:01:12,390 --> 00:01:14,660
phase of synonymous and a
他们是同义词
32
00:01:14,780 --> 00:01:16,190
Gussian distribution is parameterized
然后 高斯分布
33
00:01:17,070 --> 00:01:18,430
by 2 parameters, by a
有两个参数
34
00:01:19,010 --> 00:01:20,930
mean parameter which we
一个是均值
35
00:01:21,020 --> 00:01:22,770
denote Mu, and a variance
我们记作μ
36
00:01:23,090 --> 00:01:25,010
parameter, which we denote by sigma squared.
另一个是方差 我们记作σ平方
37
00:01:26,120 --> 00:01:27,270
If we pluck the Gaussian distribution
如果我们将高斯分布
38
00:01:27,990 --> 00:01:30,100
or Gaussian probability density, it
的概率密度函数绘制出来
39
00:01:30,220 --> 00:01:31,760
will look like the bell shaped
它看起来将是这样一个钟形的曲线
40
00:01:32,100 --> 00:01:34,820
curve, which you may have seen before.
大家之前可能就见过
41
00:01:36,230 --> 00:01:37,860
And so, this bell-shaped curve
这个钟形曲线
42
00:01:38,110 --> 00:01:40,350
is parameterized by those 2 parameters Mu and sigma.
有两个参数 分别是μ和σ
43
00:01:41,330 --> 00:01:42,670
And the location of the
其中μ控制
44
00:01:42,930 --> 00:01:44,230
center of this bell-shaped curve
这个钟形曲线
45
00:01:44,580 --> 00:01:46,960
is the mean Mu, and the
的中心位置
46
00:01:47,050 --> 00:01:48,150
width of this bell-shaped curve,
σ控制这个钟形曲线的宽度
47
00:01:49,430 --> 00:01:51,020
so it's roughly that, is
因此 参数σ
48
00:01:51,290 --> 00:01:52,970
the, this parameter
有时也称作
49
00:01:53,500 --> 00:01:55,390
sigma, is also called one standard deviation.
一个标准差
50
00:01:56,540 --> 00:01:58,350
And so, this specifies the
这条钟形曲线决定了
51
00:01:58,530 --> 00:01:59,630
probability of x taking
x取不同数值
52
00:01:59,910 --> 00:02:00,990
on different values, so x
的概率密度分布
53
00:02:01,190 --> 00:02:02,730
taking on values, you know
因此 x取中心这些值
54
00:02:02,810 --> 00:02:03,770
in the middle here is pretty high
的概率相当大
55
00:02:04,020 --> 00:02:05,290
since the Gaussian density here
因为高斯分布的概率密度
56
00:02:05,400 --> 00:02:06,490
is pretty high whereas
在这里很大
57
00:02:06,610 --> 00:02:08,540
x taking on values further and
而x取远处和更远处数值
58
00:02:08,720 --> 00:02:10,310
further away will be diminishing
的概率将逐渐降低
59
00:02:10,860 --> 00:02:12,600
in probability. Finally, just
直至消失
60
00:02:12,920 --> 00:02:13,770
for completeness, let me write
最后 为了讲述的完整性
61
00:02:14,020 --> 00:02:15,260
out the formula for the Gaussian
让我写下高斯分布的数学公式
62
00:02:16,080 --> 00:02:17,310
distribution so the property
x的概率分布
63
00:02:17,710 --> 00:02:19,780
of x and I'll
我有时不写p(x)
64
00:02:19,940 --> 00:02:20,940
sometimes write this instead of
我会用这个代替
65
00:02:21,050 --> 00:02:22,070
p of x, I'm going
我会写成
66
00:02:22,190 --> 00:02:22,960
to write this as p of
p 括号 x
67
00:02:23,350 --> 00:02:24,930
x semicolon Mu comma sigma squared.
分号 μ 逗号 σ 平方
68
00:02:25,500 --> 00:02:26,750
And so this denotes that the probability of
这个表示
69
00:02:26,910 --> 00:02:28,670
x is parametrized by
x的概率分布
70
00:02:28,810 --> 00:02:30,660
the two parameters Mu and sigma squared.
由两个参数控制μ和σ平方
71
00:02:31,940 --> 00:02:33,330
And the formula for the
高斯分布的概率密度公式
72
00:02:33,370 --> 00:02:34,760
Gaussian density is this,
是这样的
73
00:02:35,170 --> 00:02:37,860
1 over 2pi, sigma e
2π开方 乘以 σ 分之 1
74
00:02:38,070 --> 00:02:41,510
to the negative x minus Mu squared over 2 sigma squared.
乘以一个e的指数函数 其中指数项为 负的 x减μ的平方除以2倍的σ平方
75
00:02:41,870 --> 00:02:45,980
So there's no need to memorize this
其实我们并不需要
76
00:02:46,470 --> 00:02:47,530
formula, you know, this
记住这个公式
77
00:02:47,690 --> 00:02:49,410
is just the formula for the
它只是左边这条钟形曲线
78
00:02:49,540 --> 00:02:51,020
bell-shaped curve over here on the left.
对应的公式
79
00:02:51,700 --> 00:02:53,100
There's no need to memorize it and
我们没有必要记住它
80
00:02:53,270 --> 00:02:53,990
if you ever need to use this,
当我们真的需要用到它时
81
00:02:54,190 --> 00:02:56,460
you can always look this up.
我们总可以查资料找到它
82
00:02:56,540 --> 00:02:57,450
And so that figure on the
如果你选定
83
00:02:57,740 --> 00:02:58,420
left, that is what you get
μ值
84
00:02:58,910 --> 00:03:00,100
if you take a fixed
以及σ值
85
00:03:00,290 --> 00:03:01,200
value of Mu and a
然后绘制p(x)曲线
86
00:03:01,250 --> 00:03:04,070
fixed value of sigma and
那么你将得到
87
00:03:04,450 --> 00:03:06,140
you plot p of x. So this
左边这幅图
88
00:03:06,870 --> 00:03:07,830
curve here, this is really
因此这条曲线
89
00:03:08,390 --> 00:03:10,000
p of x plotted as a
其实就是
90
00:03:10,030 --> 00:03:11,540
function of x, you know,
给定μ值
91
00:03:11,640 --> 00:03:15,970
for a fixed value of Mu
以及σ平方 也就是方差值时
92
00:03:16,190 --> 00:03:18,770
and of sigma squared sigma squared, that's called the variance.
p(x)的函数图像
93
00:03:19,950 --> 00:03:22,270
And sometimes it's easier to think in terms of sigma.
也许有些时候我们使用σ会更方便
94
00:03:22,950 --> 00:03:24,730
So sigma is called the
而σ被称作
95
00:03:25,120 --> 00:03:27,850
standard deviation and it,
标准差
96
00:03:28,000 --> 00:03:29,640
so it specifies the
它确定了
97
00:03:29,800 --> 00:03:31,310
width of this Gaussian probability
高斯分布概率密度函数
98
00:03:31,730 --> 00:03:33,120
density whereas the square
的宽度
99
00:03:33,330 --> 00:03:34,490
of sigma, so sigma squared, is
而σ平方
100
00:03:34,620 --> 00:03:36,830
called the variance. Let's look
则称作方差
101
00:03:37,000 --> 00:03:39,980
at some examples of what the Gaussian distribution looks like.
让我们看几个高斯分布的图像
102
00:03:41,010 --> 00:03:43,280
If Mu equals zero, sigma equals 1.
如果μ取0 σ取1
103
00:03:43,650 --> 00:03:44,730
Then we have a Gaussian distribution
那么我们的高斯分布
104
00:03:45,480 --> 00:03:48,000
that is centered around zero, because that's Mu.
将以0为中心 因为μ等于0
105
00:03:48,810 --> 00:03:50,560
And the width of this Gaussian, so
而高斯分布的宽度
106
00:03:50,730 --> 00:03:53,610
that's one standard deviation is sigma over there.
将是一个标准差 也就是σ
107
00:03:55,140 --> 00:03:56,330
Let's look at some examples of
让我们看几个高斯分布的图像
108
00:03:56,700 --> 00:03:58,770
Gaussians. If Mu
如果μ取0
109
00:03:58,970 --> 00:04:00,750
is equal to zero it equals 1.
σ取1
110
00:04:00,950 --> 00:04:02,150
Then that corresponds to a
那么这将对应
111
00:04:02,370 --> 00:04:04,030
Gaussian distribution that is centered
一个以0为中心
112
00:04:04,770 --> 00:04:06,380
at zero since Mu is zero.
的高斯分布
113
00:04:07,390 --> 00:04:08,310
And the width of this Gaussian
而高斯分布的宽度
114
00:04:10,810 --> 00:04:12,570
is Gaussian thus controlled
高斯分布的宽度
115
00:04:13,010 --> 00:04:15,430
by sigma by that variance parameter sigma.
由标准差σ决定
116
00:04:16,850 --> 00:04:17,390
Here's another example.
来看另一个例子
117
00:04:20,520 --> 00:04:21,270
Let's say Mu is equal to
如果μ取0
118
00:04:21,550 --> 00:04:23,670
zero and sigma is equal to one-half.
σ取0.5
119
00:04:24,200 --> 00:04:26,290
So the standard deviation is
也就是说标准差
120
00:04:26,530 --> 00:04:27,650
one-half and the variance
是0.5
121
00:04:28,280 --> 00:04:29,550
sigma squared would therefore be
方差σ平方
122
00:04:29,710 --> 00:04:33,600
the square of 0.5 would be 0.25.
是0.5的平方 也就是0.25
123
00:04:33,680 --> 00:04:34,910
And in that case the Gaussian distribution,
这时候 高斯分布
124
00:04:35,600 --> 00:04:37,040
the Gaussian probability density looks
高斯分布的概率密度函数曲线
125
00:04:37,180 --> 00:04:39,490
like this, is also centered at zero.
会是这样的 以0为中心
126
00:04:40,110 --> 00:04:41,410
But now the width of
然而 现在它的宽度
127
00:04:41,600 --> 00:04:43,250
this is much smaller because
小了许多
128
00:04:43,620 --> 00:04:45,170
the smaller variance, the
因为方差变小了
129
00:04:45,520 --> 00:04:46,980
width of this Gaussian density
高斯密度函数的宽度
130
00:04:47,450 --> 00:04:49,350
is roughly half as wide.
大约是之前的一半
131
00:04:50,550 --> 00:04:51,710
But because this is a
但是 因为这是
132
00:04:51,970 --> 00:04:53,590
probability distribution, the area under
一个概率分布
133
00:04:53,800 --> 00:04:54,850
the curve, that is the shaded
因此曲线下的面积
134
00:04:55,310 --> 00:04:56,790
area there, that area
这些阴影区域的积分
135
00:04:57,180 --> 00:04:58,810
must integrate to 1.
一定是1
136
00:04:58,810 --> 00:05:00,500
This is a property of probability distributions.
这是概率分布的一个特性
137
00:05:01,650 --> 00:05:02,680
And so, you know, this
因此
138
00:05:02,830 --> 00:05:04,530
is a much taller Gaussian density because
这个高斯密度曲线更高
139
00:05:04,820 --> 00:05:06,050
it's half as wide, with
因为它只有一半宽
140
00:05:06,200 --> 00:05:08,150
half the standard deviation, but it's twice as tall.
只有一半的标准差 但是它有两倍高
141
00:05:09,130 --> 00:05:11,510
Another example, if sigma is
再看一个例子
142
00:05:11,640 --> 00:05:12,540
equal to 2, then you
如果σ等于2
143
00:05:12,650 --> 00:05:14,870
get a much fatter, or much wider Gaussian density.
那么你将得到一个更胖更宽的高斯密度曲线
144
00:05:15,310 --> 00:05:17,090
And so here, the sigma
在这里
145
00:05:17,370 --> 00:05:19,300
parameter controls that this
σ参数决定了
146
00:05:19,630 --> 00:05:21,000
Gaussian density has a wider width.
曲线会更宽
147
00:05:21,930 --> 00:05:23,180
And once again, the area under
同样的
148
00:05:23,220 --> 00:05:24,390
the curve, that is this shaded
曲线下方的面积 这快阴影区域
149
00:05:24,700 --> 00:05:26,720
area, you know, it always integrates to 1.
的积分一定是1
150
00:05:26,840 --> 00:05:28,170
That's a property of probability
这是概率分布的一个特性
151
00:05:28,800 --> 00:05:30,280
distributions, and because it's
因为它更宽
152
00:05:30,480 --> 00:05:31,930
wider, it's also half as
因此它只有一半高
153
00:05:32,650 --> 00:05:36,640
tall, in order to just integrate to the same thing.
这样积分才能保持不变
154
00:05:36,750 --> 00:05:37,520
And finally, one last example would be,
最后一个例子
155
00:05:37,880 --> 00:05:38,980
if we now changed the Mu
如果我们也改变参数μ
156
00:05:39,130 --> 00:05:40,660
parameters as well, then instead
那么曲线
157
00:05:41,000 --> 00:05:42,320
of being centered at zero, we
将不再以0为中心
158
00:05:42,410 --> 00:05:43,840
now we have a Gaussian distribution
现在我们的高斯分布
159
00:05:44,830 --> 00:05:46,810
that is centered at three, because
以3为中心
160
00:05:47,710 --> 00:05:49,740
this shifts over the entire Gaussian distribution.
因为整个高斯分布被平移了
161
00:05:51,170 --> 00:05:54,040
Next, lets take about the parameter estimation problem.
接下来 让我们来看参数估计问题
162
00:05:55,100 --> 00:05:56,570
So what is the parameter estimation problem?
那么 什么是参数估计问题?
163
00:05:57,520 --> 00:05:58,350
Let's say we have a data set
假设我们有一个数据集
164
00:05:58,850 --> 00:06:00,180
of m examples, so x1
其中有m个样本
165
00:06:00,350 --> 00:06:01,470
through x(m), and let's say
从x(1)到x(m)
166
00:06:01,710 --> 00:06:03,250
each of these examples is a real number.
假设他们都是实数
167
00:06:04,200 --> 00:06:05,520
Here in the figure, I've plotted an
在这幅图里
168
00:06:05,620 --> 00:06:06,390
example of a data set,
我画出了整个数据集
169
00:06:06,580 --> 00:06:08,390
so the horizontal axis is the
图中的横轴
170
00:06:08,580 --> 00:06:09,430
x axis and, you know, I
是x轴
171
00:06:09,560 --> 00:06:12,290
have a range of examples of x and I've just plotted them
我的样本x取值分布广泛
172
00:06:12,560 --> 00:06:15,060
on this figure here.
我就将它们画在这里
173
00:06:15,260 --> 00:06:17,280
And the parameter estimation problem is, let's
而参数估计问题就是
174
00:06:17,500 --> 00:06:18,750
say I suspect that these examples
假设我猜测这些样本
175
00:06:19,450 --> 00:06:21,160
came from a Gaussian distribution so
来自一个高斯分布的总体
176
00:06:21,300 --> 00:06:24,560
let's say I suspect that each of my example x(i) was distributed.
假设我猜测每一个样本xi服从某个分布
177
00:06:25,300 --> 00:06:26,930
That's what this tilde thing means.
这里的波浪号表示 服从...分布
178
00:06:27,590 --> 00:06:28,520
Thus, I suspect that each of
因此 我猜测
179
00:06:28,580 --> 00:06:30,220
these examples was distributed according
这里的每个样本
180
00:06:30,760 --> 00:06:32,190
to a normal distribution or
服从正态分布
181
00:06:32,250 --> 00:06:34,060
Gaussian distribution with some
或者高斯分布
182
00:06:34,300 --> 00:06:36,210
parameter Mu and some parameter sigma squared.
它有两个参数 μ和σ平方
183
00:06:37,570 --> 00:06:39,560
But I don't know what the values of these parameters are.
然而 我不知道这些参数的值是多少
184
00:06:40,820 --> 00:06:42,360
The problem with parameter estimation is,
参数估计问题就是
185
00:06:43,160 --> 00:06:44,480
given my data set I want
给定数据集
186
00:06:44,800 --> 00:06:45,720
to figure out, I want to
我希望能找到
187
00:06:45,880 --> 00:06:46,840
estimate, what are the
能够估算出
188
00:06:46,990 --> 00:06:48,470
values of Mu and sigma squared.
μ和σ平方的值
189
00:06:49,620 --> 00:06:50,570
So, if you're given a
因此 如果你有
190
00:06:50,640 --> 00:06:51,660
data set like this, you know,
这样一个数据
191
00:06:51,790 --> 00:06:54,050
it looks like maybe, if I
它看起来好像
192
00:06:54,190 --> 00:06:56,210
estimate what Gaussian distribution the
如果我试图找到
193
00:06:56,350 --> 00:06:59,010
data came from, maybe that
它来自哪个高斯分布
194
00:07:00,660 --> 00:07:01,770
might be roughly the Gaussian distribution
也许这个就是
195
00:07:02,280 --> 00:07:04,410
it came from, with Mu
它对应的高斯分布
196
00:07:05,500 --> 00:07:07,350
being the center of the distribution and
其中μ对应分布函数的中心
197
00:07:07,990 --> 00:07:11,680
sigma the standard deviation controlling the width of this Gaussian distribution.
而标准差σ控制高斯分布的宽度
198
00:07:12,140 --> 00:07:12,820
It seems like a reasonable
这条曲线似乎
199
00:07:13,260 --> 00:07:15,280
fit to the data, because, you know, it
很好的拟合了数据
200
00:07:15,440 --> 00:07:16,880
looks the data has
因为看起来