-
Notifications
You must be signed in to change notification settings - Fork 2
/
grad_cam.py
148 lines (127 loc) · 4.84 KB
/
grad_cam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
"""from https://github.com/jacobgil/keras-grad-cam"""
from keras.applications.vgg16 import (
VGG16, preprocess_input, decode_predictions)
from keras.preprocessing import image
from keras.layers.core import Lambda
from keras.models import Sequential
from tensorflow.python.framework import ops
import keras.backend as K
import tensorflow as tf
import numpy as np
import keras
import sys
import cv2
def target_category_loss(x, category_index, nb_classes):
return tf.multiply(x, K.one_hot([category_index], nb_classes))
def target_category_loss_output_shape(input_shape):
return input_shape
def normalize(x):
# utility function to normalize a tensor by its L2 norm
return x / (K.sqrt(K.mean(K.square(x))) + 1e-5)
def load_image(img_path):
# img_path = sys.argv[1]
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
return x
def register_gradient():
if "GuidedBackProp" not in ops._gradient_registry._registry:
@ops.RegisterGradient("GuidedBackProp")
def _GuidedBackProp(op, grad):
dtype = op.inputs[0].dtype
return grad * tf.cast(grad > 0., dtype) * \
tf.cast(op.inputs[0] > 0., dtype)
def compile_saliency_function(model, activation_layer='block5_conv3'):
input_img = model.input
layer_dict = dict([(layer.name, layer) for layer in model.layers[1:]])
layer_output = layer_dict[activation_layer].output
max_output = K.max(layer_output, axis=3)
saliency = K.gradients(K.sum(max_output), input_img)[0]
return K.function([input_img, K.learning_phase()], [saliency])
def modify_backprop(model, name):
g = tf.get_default_graph()
with g.gradient_override_map({'Relu': name}):
# get layers that have an activation
layer_dict = [layer for layer in model.layers[1:]
if hasattr(layer, 'activation')]
# replace relu activation
for layer in layer_dict:
if layer.activation == keras.activations.relu:
layer.activation = tf.nn.relu
# re-instanciate a new model
new_model = VGG16(weights='imagenet')
return new_model
def deprocess_image(x):
'''
Same normalization as in:
https://github.com/fchollet/keras/blob/master/examples/conv_filter_visualization.py
'''
if np.ndim(x) > 3:
x = np.squeeze(x)
# normalize tensor: center on 0., ensure std is 0.1
x -= x.mean()
x /= (x.std() + 1e-5)
x *= 0.1
# clip to [0, 1]
x += 0.5
x = np.clip(x, 0, 1)
# convert to RGB array
x *= 255
if K.image_dim_ordering() == 'th':
x = x.transpose((1, 2, 0))
x = np.clip(x, 0, 255).astype('uint8')
return x
def grad_cam(input_model, image, category_index, layer_name, nb_classes):
"""
do grad_cam algorithm
:param input_model:
:param image: shape = [1, h, w, c]
:param category_index: y_label
:param layer_name: layer name convolutional layer wanted to visualize
:param nb_classes: number of classes
:return: cam and heatmap
"""
# nb_classes = 1000
target_output = target_category_loss(input_model.output, category_index, nb_classes)
loss = K.sum(target_output)
conv_output = input_model.get_layer(layer_name).output
grads = normalize(K.gradients(loss, conv_output)[0])
gradient_function = K.function([input_model.input], [conv_output, grads])
output, grads_val = gradient_function([image])
output, grads_val = output[0, :], grads_val[0, :, :, :]
weights = np.mean(grads_val, axis = (0, 1))
cam = np.ones(output.shape[0 : 2], dtype = np.float32)
for i, w in enumerate(weights):
cam += w * output[:, :, i]
cam = cv2.resize(cam, (224, 224))
cam = np.maximum(cam, 0)
heatmap = cam / np.max(cam)
# #Return to BGR [0..255] from the preprocessed image
# image = image[0, :]
# image -= np.min(image)
# image = np.minimum(image, 255)
#
# cam = cv2.applyColorMap(np.uint8(255*heatmap), cv2.COLORMAP_JET)
# cam = np.float32(cam) + np.float32(image)
# cam = 255 * cam / np.max(cam)
return heatmap
# preprocessed_input = load_image(sys.argv[1])
#
# model = VGG16(weights='imagenet')
#
# predictions = model.predict(preprocessed_input)
# top_1 = decode_predictions(predictions)[0][0]
# print('Predicted class:')
# print('%s (%s) with probability %.2f' % (top_1[1], top_1[0], top_1[2]))
#
# predicted_class = np.argmax(predictions)
# cam, heatmap = grad_cam(model, preprocessed_input, predicted_class, "block5_conv3")
# cv2.imwrite("gradcam.jpg", cam)
#
register_gradient()
# guided_model = modify_backprop(model, 'GuidedBackProp')
# saliency_fn = compile_saliency_function(guided_model)
# saliency = saliency_fn([preprocessed_input, 0])
# gradcam = saliency[0] * heatmap[..., np.newaxis]
# cv2.imwrite("guided_gradcam.jpg", deprocess_image(gradcam))