Code for paper "Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality". https://arxiv.org/abs/1801.02613
python train_model.py -d mnist -e 50 -b 128
python craft_adv_samples.py -d cifar -a cw-l2 -b 100
python extract_characteristics.py -d cifar -a cw-l2 -r lid -k 20 -b 100
python detect_adv_examples.py -d cifar -a fgsm -t cw-l2 -r lid
python 3.5, tqdm, tensorflow = 1.8, Keras >= 2.0, cleverhans >= 1.0.0 (may need extra change to pass in keras learning rate)
Kernal Density and Bayesian Uncertainty are from https://github.com/rfeinman/detecting-adversarial-samples ("Detecting Adversarial Samples from Artifacts" (Feinman et al. 2017))
python craft_adv_samples.py -d derm -a fgsm -b 100
python extract_features.py -d derm -a clean -b 200
python train_random_svms.py -d derm -a fgsm