Skip to content

Latest commit

 

History

History
32 lines (20 loc) · 1.18 KB

README_LID.md

File metadata and controls

32 lines (20 loc) · 1.18 KB

Code for paper "Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality". https://arxiv.org/abs/1801.02613

Update: added BatchNormalization to after Conv and ReLU. 17 Sept. 2018.

1. Pre-train DNN models:

python train_model.py -d mnist -e 50 -b 128

2. Craft adversarial examples:

python craft_adv_samples.py -d cifar -a cw-l2 -b 100

3.Extract detection characteristics:

python extract_characteristics.py -d cifar -a cw-l2 -r lid -k 20 -b 100

4. Train simple detectors:

python detect_adv_examples.py -d cifar -a fgsm -t cw-l2 -r lid

Dependencies:

python 3.5, tqdm, tensorflow = 1.8, Keras >= 2.0, cleverhans >= 1.0.0 (may need extra change to pass in keras learning rate)

Kernal Density and Bayesian Uncertainty are from https://github.com/rfeinman/detecting-adversarial-samples ("Detecting Adversarial Samples from Artifacts" (Feinman et al. 2017))

1. Pre-train Medical DNN models:

2. Craft adversarial examples:

python craft_adv_samples.py -d derm -a fgsm -b 100

3. Extract features & split testing set

python extract_features.py -d derm -a clean -b 200

4. train svms and do detection

python train_random_svms.py -d derm -a fgsm