forked from junyanz/CycleGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcycle_gan_model.lua
315 lines (280 loc) · 12.2 KB
/
cycle_gan_model.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
local class = require 'class'
require 'models.base_model'
require 'models.architectures'
require 'util.image_pool'
util = paths.dofile('../util/util.lua')
CycleGANModel = class('CycleGANModel', 'BaseModel')
function CycleGANModel:__init(conf)
BaseModel.__init(self, conf)
conf = conf or {}
end
function CycleGANModel:model_name()
return 'CycleGANModel'
end
function CycleGANModel:InitializeStates(use_wgan)
optimState = {learningRate=opt.lr, beta1=opt.beta1,}
return optimState
end
-- Defines models and networks
function CycleGANModel:Initialize(opt)
if opt.test == 0 then
self.fakeAPool = ImagePool(opt.pool_size)
self.fakeBPool = ImagePool(opt.pool_size)
end
-- define tensors
if opt.test == 0 then -- allocate tensors for training
self.real_A = torch.Tensor(opt.batchSize, opt.input_nc, opt.fineSize, opt.fineSize)
self.real_B = torch.Tensor(opt.batchSize, opt.output_nc, opt.fineSize, opt.fineSize)
self.fake_A = torch.Tensor(opt.batchSize, opt.input_nc, opt.fineSize, opt.fineSize)
self.fake_B = torch.Tensor(opt.batchSize, opt.output_nc, opt.fineSize, opt.fineSize)
self.rec_A = torch.Tensor(opt.batchSize, opt.input_nc, opt.fineSize, opt.fineSize)
self.rec_B = torch.Tensor(opt.batchSize, opt.output_nc, opt.fineSize, opt.fineSize)
end
-- load/define models
local use_lsgan = ((opt.use_lsgan ~= nil) and (opt.use_lsgan == 1))
if not use_lsgan then
self.criterionGAN = nn.BCECriterion()
else
self.criterionGAN = nn.MSECriterion()
end
self.criterionRec = nn.AbsCriterion()
local netG_A, netD_A, netG_B, netD_B = nil, nil, nil, nil
if opt.continue_train == 1 then
if opt.test == 1 then -- test mode
netG_A = util.load_test_model('G_A', opt)
netG_B = util.load_test_model('G_B', opt)
else
netG_A = util.load_model('G_A', opt)
netG_B = util.load_model('G_B', opt)
netD_A = util.load_model('D_A', opt)
netD_B = util.load_model('D_B', opt)
end
else
local use_sigmoid = (not use_lsgan)
-- netG_test = defineG(opt.input_nc, opt.output_nc, opt.ngf, "resnet_unet", opt.arch)
-- os.exit()
netG_A = defineG(opt.input_nc, opt.output_nc, opt.ngf, opt.which_model_netG, opt.arch)
print('netG_A...', netG_A)
netD_A = defineD(opt.output_nc, opt.ndf, opt.which_model_netD, opt.n_layers_D, use_sigmoid) -- no sigmoid layer
print('netD_A...', netD_A)
netG_B = defineG(opt.output_nc, opt.input_nc, opt.ngf, opt.which_model_netG, opt.arch)
print('netG_B...', netG_B)
netD_B = defineD(opt.input_nc, opt.ndf, opt.which_model_netD, opt.n_layers_D, use_sigmoid) -- no sigmoid layer
print('netD_B', netD_B)
end
self.netD_A = netD_A
self.netG_A = netG_A
self.netG_B = netG_B
self.netD_B = netD_B
-- define real/fake labels
if opt.test == 0 then
local D_A_size = self.netD_A:forward(self.real_B):size() -- hack: assume D_size_A = D_size_B
self.fake_label_A = torch.Tensor(D_A_size):fill(0.0)
self.real_label_A = torch.Tensor(D_A_size):fill(0.9) -- no soft smoothing
local D_B_size = self.netD_B:forward(self.real_A):size() -- hack: assume D_size_A = D_size_B
self.fake_label_B = torch.Tensor(D_B_size):fill(0.0)
self.real_label_B = torch.Tensor(D_B_size):fill(0.9) -- no soft smoothing
self.optimStateD_A = self:InitializeStates()
self.optimStateG_A = self:InitializeStates()
self.optimStateD_B = self:InitializeStates()
self.optimStateG_B = self:InitializeStates()
self:RefreshParameters()
print('---------- # Learnable Parameters --------------')
print(('G_A = %d'):format(self.parametersG_A:size(1)))
print(('D_A = %d'):format(self.parametersD_A:size(1)))
print(('G_B = %d'):format(self.parametersG_B:size(1)))
print(('D_B = %d'):format(self.parametersD_B:size(1)))
print('------------------------------------------------')
end
end
-- Runs the forward pass of the network and
-- saves the result to member variables of the class
function CycleGANModel:Forward(input, opt)
if opt.which_direction == 'BtoA' then
local temp = input.real_A:clone()
input.real_A = input.real_B:clone()
input.real_B = temp
end
if opt.test == 0 then
self.real_A:copy(input.real_A)
self.real_B:copy(input.real_B)
end
if opt.test == 1 then -- forward for test
if opt.gpu > 0 then
self.real_A = input.real_A:cuda()
self.real_B = input.real_B:cuda()
else
self.real_A = input.real_A:clone()
self.real_B = input.real_B:clone()
end
self.fake_B = self.netG_A:forward(self.real_A):clone()
self.fake_A = self.netG_B:forward(self.real_B):clone()
self.rec_A = self.netG_B:forward(self.fake_B):clone()
self.rec_B = self.netG_A:forward(self.fake_A):clone()
end
end
-- create closure to evaluate f(X) and df/dX of discriminator
function CycleGANModel:fDx_basic(x, gradParams, netD, netG, real, fake, real_label, fake_label, opt)
util.BiasZero(netD)
util.BiasZero(netG)
gradParams:zero()
-- Real log(D_A(B))
local output = netD:forward(real)
local errD_real = self.criterionGAN:forward(output, real_label)
local df_do = self.criterionGAN:backward(output, real_label)
netD:backward(real, df_do)
-- Fake + log(1 - D_A(G_A(A)))
output = netD:forward(fake)
local errD_fake = self.criterionGAN:forward(output, fake_label)
local df_do2 = self.criterionGAN:backward(output, fake_label)
netD:backward(fake, df_do2)
-- Compute loss
local errD = (errD_real + errD_fake) / 2.0
return errD, gradParams
end
function CycleGANModel:fDAx(x, opt)
-- use image pool that stores the old fake images
fake_B = self.fakeBPool:Query(self.fake_B)
self.errD_A, gradParams = self:fDx_basic(x, self.gradparametersD_A, self.netD_A, self.netG_A,
self.real_B, fake_B, self.real_label_A, self.fake_label_A, opt)
return self.errD_A, gradParams
end
function CycleGANModel:fDBx(x, opt)
-- use image pool that stores the old fake images
fake_A = self.fakeAPool:Query(self.fake_A)
self.errD_B, gradParams = self:fDx_basic(x, self.gradparametersD_B, self.netD_B, self.netG_B,
self.real_A, fake_A, self.real_label_B, self.fake_label_B, opt)
return self.errD_B, gradParams
end
function CycleGANModel:fGx_basic(x, gradParams, netG, netD, netE, real, real2, real_label, lambda1, lambda2, opt)
util.BiasZero(netD)
util.BiasZero(netG)
util.BiasZero(netE) -- inverse mapping
gradParams:zero()
-- G should be identity if real2 is fed.
local errI = nil
local identity = nil
if opt.identity > 0 then
identity = netG:forward(real2):clone()
errI = self.criterionRec:forward(identity, real2)*lambda2*opt.identity
local didentity_loss_do = self.criterionRec:backward(identity, real2):mul(lambda2):mul(opt.identity)
netG:backward(real2, didentity_loss_do)
end
--- GAN loss: D_A(G_A(A))
local fake = netG:forward(real):clone()
local output = netD:forward(fake)
local errG = self.criterionGAN:forward(output, real_label)
local df_do1 = self.criterionGAN:backward(output, real_label)
local df_d_GAN = netD:updateGradInput(fake, df_do1) --
-- forward cycle loss
local rec = netE:forward(fake):clone()
local errRec = self.criterionRec:forward(rec, real) * lambda1
local df_do2 = self.criterionRec:backward(rec, real):mul(lambda1)
local df_do_rec = netE:updateGradInput(fake, df_do2)
netG:backward(real, df_d_GAN + df_do_rec)
-- backward cycle loss
local fake2 = netE:forward(real2)--:clone()
local rec2 = netG:forward(fake2)--:clone()
local errAdapt = self.criterionRec:forward(rec2, real2) * lambda2
local df_do_coadapt = self.criterionRec:backward(rec2, real2):mul(lambda2)
netG:backward(fake2, df_do_coadapt)
return gradParams, errG, errRec, errI, fake, rec, identity
end
function CycleGANModel:fGAx(x, opt)
self.gradparametersG_A, self.errG_A, self.errRec_A, self.errI_A, self.fake_B, self.rec_A, self.identity_B =
self:fGx_basic(x, self.gradparametersG_A, self.netG_A, self.netD_A, self.netG_B, self.real_A, self.real_B,
self.real_label_A, opt.lambda_A, opt.lambda_B, opt)
return self.errG_A, self.gradparametersG_A
end
function CycleGANModel:fGBx(x, opt)
self.gradparametersG_B, self.errG_B, self.errRec_B, self.errI_B, self.fake_A, self.rec_B, self.identity_A =
self:fGx_basic(x, self.gradparametersG_B, self.netG_B, self.netD_B, self.netG_A, self.real_B, self.real_A,
self.real_label_B, opt.lambda_B, opt.lambda_A, opt)
return self.errG_B, self.gradparametersG_B
end
function CycleGANModel:OptimizeParameters(opt)
local fDA = function(x) return self:fDAx(x, opt) end
local fGA = function(x) return self:fGAx(x, opt) end
local fDB = function(x) return self:fDBx(x, opt) end
local fGB = function(x) return self:fGBx(x, opt) end
optim.adam(fGA, self.parametersG_A, self.optimStateG_A)
optim.adam(fDA, self.parametersD_A, self.optimStateD_A)
optim.adam(fGB, self.parametersG_B, self.optimStateG_B)
optim.adam(fDB, self.parametersD_B, self.optimStateD_B)
end
function CycleGANModel:RefreshParameters()
self.parametersD_A, self.gradparametersD_A = nil, nil -- nil them to avoid spiking memory
self.parametersG_A, self.gradparametersG_A = nil, nil
self.parametersG_B, self.gradparametersG_B = nil, nil
self.parametersD_B, self.gradparametersD_B = nil, nil
-- define parameters of optimization
self.parametersG_A, self.gradparametersG_A = self.netG_A:getParameters()
self.parametersD_A, self.gradparametersD_A = self.netD_A:getParameters()
self.parametersG_B, self.gradparametersG_B = self.netG_B:getParameters()
self.parametersD_B, self.gradparametersD_B = self.netD_B:getParameters()
end
function CycleGANModel:Save(prefix, opt)
util.save_model(self.netG_A, prefix .. '_net_G_A.t7', 1)
util.save_model(self.netD_A, prefix .. '_net_D_A.t7', 1)
util.save_model(self.netG_B, prefix .. '_net_G_B.t7', 1)
util.save_model(self.netD_B, prefix .. '_net_D_B.t7', 1)
end
function CycleGANModel:GetCurrentErrorDescription()
description = ('[A] G: %.4f D: %.4f Rec: %.4f I: %.4f || [B] G: %.4f D: %.4f Rec: %.4f I:%.4f'):format(
self.errG_A and self.errG_A or -1,
self.errD_A and self.errD_A or -1,
self.errRec_A and self.errRec_A or -1,
self.errI_A and self.errI_A or -1,
self.errG_B and self.errG_B or -1,
self.errD_B and self.errD_B or -1,
self.errRec_B and self.errRec_B or -1,
self.errI_B and self.errI_B or -1)
return description
end
function CycleGANModel:GetCurrentErrors()
local errors = {errG_A=self.errG_A, errD_A=self.errD_A, errRec_A=self.errRec_A, errI_A=self.errI_A,
errG_B=self.errG_B, errD_B=self.errD_B, errRec_B=self.errRec_B, errI_B=self.errI_B}
return errors
end
-- returns a string that describes the display plot configuration
function CycleGANModel:DisplayPlot(opt)
if opt.identity > 0 then
return 'errG_A,errD_A,errRec_A,errI_A,errG_B,errD_B,errRec_B,errI_B'
else
return 'errG_A,errD_A,errRec_A,errG_B,errD_B,errRec_B'
end
end
function CycleGANModel:UpdateLearningRate(opt)
local lrd = opt.lr / opt.niter_decay
local old_lr = self.optimStateD_A['learningRate']
local lr = old_lr - lrd
self.optimStateD_A['learningRate'] = lr
self.optimStateD_B['learningRate'] = lr
self.optimStateG_A['learningRate'] = lr
self.optimStateG_B['learningRate'] = lr
print(('update learning rate: %f -> %f'):format(old_lr, lr))
end
local function MakeIm3(im)
if im:size(2) == 1 then
local im3 = torch.repeatTensor(im, 1,3,1,1)
return im3
else
return im
end
end
function CycleGANModel:GetCurrentVisuals(opt, size)
local visuals = {}
table.insert(visuals, {img=MakeIm3(self.real_A), label='real_A'})
table.insert(visuals, {img=MakeIm3(self.fake_B), label='fake_B'})
table.insert(visuals, {img=MakeIm3(self.rec_A), label='rec_A'})
if opt.test == 0 and opt.identity > 0 then
table.insert(visuals, {img=MakeIm3(self.identity_A), label='identity_A'})
end
table.insert(visuals, {img=MakeIm3(self.real_B), label='real_B'})
table.insert(visuals, {img=MakeIm3(self.fake_A), label='fake_A'})
table.insert(visuals, {img=MakeIm3(self.rec_B), label='rec_B'})
if opt.test == 0 and opt.identity > 0 then
table.insert(visuals, {img=MakeIm3(self.identity_B), label='identity_B'})
end
return visuals
end