-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain_ori.py
242 lines (194 loc) · 8.01 KB
/
main_ori.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import json
import math
import pdb
from decimal import Decimal
import torch
import torch.nn.functional as F
import torch.nn.utils as utils
from tensorboardX import SummaryWriter
from torch.optim.lr_scheduler import StepLR
from tqdm import tqdm
import loss as L
import data_new
import model
import utility
from model.edsr_org import EDSR
from model.rdn_org import RDN
from model.bnsrresnet_org import SRResNet as bnSRResNet
from option import args
from utils import common as util
from utils.common import AverageMeter, load_check
torch.manual_seed(args.seed)
checkpoint = utility.checkpoint(args)
device = torch.device('cpu' if args.cpu else f'cuda:{args.gpu_id}')
class Trainer():
def __init__(self, args, loader, t_model, my_loss,ckp):
self.epoch = 0
self.args = args
self.scale = args.scale
self.ckp = ckp
self.loader_train = loader.loader_train
self.loader_test = loader.loader_test
self.model = t_model
self.loss = my_loss
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=args.lr, betas=args.betas, eps=args.epsilon)
self.sheduler = StepLR(self.optimizer, step_size=int(args.decay), gamma=args.gamma)
self.writer_train = SummaryWriter(ckp.dir + '/run/train')
if args.resume is not None:
ckpt = torch.load(args.resume)
self.epoch = ckpt['epoch']
print(f"Continue from {self.epoch}")
self.model.load_state_dict(ckpt['state_dict'])
self.optimizer.load_state_dict(ckpt['optimizer'])
self.sheduler.load_state_dict(ckpt['scheduler'])
self.error_last = 1e8
self.losses = AverageMeter()
def train(self):
self.epoch = self.epoch + 1
lr = self.optimizer.state_dict()['param_groups'][0]['lr']
self.writer_train.add_scalar(f'lr', lr, self.epoch)
self.ckp.write_log(
'[Epoch {}]\tLearning rate: {:.2e}'.format(self.epoch, Decimal(lr))
)
self.model.train()
num_iterations = len(self.loader_train)
timer_data, timer_model = utility.timer(), utility.timer()
self.loader_train.dataset.set_scale(0)
for batch, (lr, hr, _,) in enumerate(self.loader_train):
num_iters = num_iterations * (self.epoch - 1) + batch
lr, hr = self.prepare(lr, hr)
data_size = lr.size(0)
timer_data.hold()
timer_model.tic()
self.optimizer.zero_grad()
sr = self.model(lr)
# start log
self.loss.start_log()
loss = self.loss(sr, hr)
self.loss.end_log(len(lr))
if self.args.gclip > 0:
utils.clip_grad_value_(
self.model.parameters(),
self.args.gclip
)
loss.backward()
self.optimizer.step()
timer_model.hold()
self.losses.update(loss.item(), data_size)
display_loss = self.loss.display_loss(len(lr))+f'Loss: {self.losses.avg: .3f}'
if (batch + 1) % self.args.print_every == 0:
self.ckp.write_log('[{}/{}]\t{}\t{:.1f}+{:.1f}s'.format(
(batch + 1) * self.args.batch_size,
len(self.loader_train.dataset),
display_loss,
timer_model.release(),
timer_data.release()))
timer_data.tic()
self.sheduler.step()
def test(self, is_teacher=False):
torch.set_grad_enabled(False)
self.ckp.write_log('\nEvaluation:')
self.ckp.add_log(
torch.zeros(1, len(self.loader_test), len(self.scale))
)
model = self.model
model.eval()
timer_test = utility.timer()
if self.args.save_results: self.ckp.begin_background()
self.savesau = {}
self.savesal = {}
for idx_data, d in enumerate(self.loader_test):
for idx_scale, scale in enumerate(self.scale):
d.dataset.set_scale(idx_scale)
i = 0
for lr, hr, filename in tqdm(d, ncols=80):
i += 1
lr, hr = self.prepare(lr, hr)
sr = model(lr)
sr = utility.quantize(sr, self.args.rgb_range)
save_list = [sr]
cur_psnr = utility.calc_psnr(
sr, hr, scale, self.args.rgb_range, dataset=d
)
self.ckp.log[-1, idx_data, idx_scale] += cur_psnr
if self.args.save_gt:
save_list.extend([lr, hr])
if self.args.save_results:
save_name = f'{args.k_bits}bit_{filename[0]}'
self.ckp.save_results(d, save_name, save_list, scale)
# pdb.set_trace()
self.ckp.log[-1, idx_data, idx_scale] /= len(d)
best = self.ckp.log.max(0)
self.ckp.write_log(
'[{} x{}] PSNR: {:.3f} (Best: {:.3f} @epoch {})'.format(
d.dataset.name,
scale,
self.ckp.log[-1, idx_data, idx_scale],
best[0][idx_data, idx_scale],
best[1][idx_data, idx_scale] + 1,
)
)
self.writer_train.add_scalar(f'psnr', self.ckp.log[-1, idx_data, idx_scale], self.epoch)
if self.args.save_results:
self.ckp.end_background()
if not self.args.test_only:
is_best = (best[1][0, 0] + 1 == self.epoch)
state = {
'epoch': self.epoch,
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'scheduler': self.sheduler.state_dict()
}
util.save_checkpoint(state, is_best, checkpoint=self.ckp.dir + '/model')
self.ckp.write_log(
'Total: {:.2f}s\n'.format(timer_test.toc()), refresh=True
)
torch.set_grad_enabled(True)
def prepare(self, *args):
def _prepare(tensor):
if self.args.precision == 'half': tensor = tensor.half()
return tensor.cuda()
return [_prepare(a) for a in args]
def terminate(self):
if self.args.test_only:
self.test()
return True
else:
return self.epoch >= self.args.epochs
def main():
global checkpoint
if checkpoint.ok:
loader = data_new.Data(args)
if args.model.lower() == 'edsr':
t_model = EDSR(args, is_teacher=False).to(device)
elif args.model.lower() == 'rdn':
t_model = RDN(args, is_teacher=False).to(device)
elif args.model.lower() == 'bnsrresnet':
t_model = bnSRResNet(args, is_teacher=False).to(device)
else:
raise ValueError('not expected model = {}'.format(args.model))
if args.pre_train is not None:
tckpt = torch.load(args.pre_train)
t_checkpoint = tckpt['state_dict'] if 'state_dict' in tckpt else tckpt
t_model.load_state_dict(t_checkpoint)
if args.test_only:
if args.refine is None:
ckpt = torch.load(f'{args.save}/model/model_best.pth.tar')
refine_path = f'{args.save}/model/model_best.pth.tar'
else:
ckpt = torch.load(f'{args.refine}')
refine_path = args.refine
t_checkpoint = ckpt['state_dict'] if 'state_dict' in ckpt else ckpt
t_model.load_state_dict(t_checkpoint)
print(f"Load model from {refine_path}")
_loss = L.Loss(args, checkpoint) if not args.test_only else None
t = Trainer(args, loader, t_model, _loss, checkpoint)
print(f'{args.save} start!')
while not t.terminate():
# t.test(True)
t.train()
t.test()
checkpoint.done()
print(f'{args.save} done!')
if __name__ == '__main__':
main()