-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdemo.py
219 lines (191 loc) · 8.99 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
'''
python demo.py --yaml=options/shape.yaml --task=shape --datadir=examples --eval.vox_res=128 --ckpt=
'''
import torch
import torchvision.transforms.functional as torchvision_F
import numpy as np
import os
import sys
import shutil
import importlib
import cv2
import utils.options as options
import utils.util_vis as util_vis
from utils.util import EasyDict as edict
from PIL import Image
from utils.eval_3D import get_dense_3D_grid, compute_level_grid, convert_to_explicit
from tqdm import tqdm
def get_1d_bounds(arr):
nz = np.flatnonzero(arr)
return nz[0], nz[-1]
def get_bbox_from_mask(mask, thr):
masks_for_box = (mask > thr).astype(np.float32)
assert masks_for_box.sum() > 0, "Empty mask!"
x0, x1 = get_1d_bounds(masks_for_box.sum(axis=-2))
y0, y1 = get_1d_bounds(masks_for_box.sum(axis=-1))
return x0, y0, x1, y1
def square_crop(image, bbox, crop_ratio=1.):
x1, y1, x2, y2 = bbox
h, w = y2-y1, x2-x1
yc, xc = (y1+y2)/2, (x1+x2)/2
S = max(h, w)*1.2
scale = S*crop_ratio
image = torchvision_F.crop(image, top=int(yc-scale/2), left=int(xc-scale/2), height=int(scale), width=int(scale))
return image
def preprocess_image(opt, image, bbox):
image = square_crop(image, bbox=bbox)
if image.size[0] != opt.W or image.size[1] != opt.H:
image = image.resize((opt.W, opt.H))
image = torchvision_F.to_tensor(image)
rgb, mask = image[:3], image[3:]
if opt.data.bgcolor is not None:
# replace background color using mask
rgb = rgb * mask + opt.data.bgcolor * (1 - mask)
mask = (mask > 0.5).float()
return rgb, mask
def get_image(opt, image_name, mask_name):
image_fname = os.path.join(opt.datadir, 'images', image_name)
mask_fname = os.path.join(opt.datadir, 'masks', mask_name)
image = Image.open(image_fname).convert("RGB")
mask = Image.open(mask_fname).convert("L")
mask_np = np.array(mask)
#binarize
mask_np[mask_np <= 127] = 0
mask_np[mask_np >= 127] = 1.0
image = Image.merge("RGBA", (*image.split(), mask))
bbox = get_bbox_from_mask(mask_np, 0.5)
rgb_input_map, mask_input_map = preprocess_image(opt, image, bbox=bbox)
return rgb_input_map, mask_input_map
def erode_mask(mask, iterations=5):
# [H, W]
mask_np = mask.squeeze(0).cpu().numpy().astype(np.uint8)
mask_eroded = cv2.erode(mask_np, np.ones((3,3), np.uint8), iterations=iterations)
mask_eroded = torch.tensor(mask_eroded).unsqueeze(0).float()
return mask_eroded
def get_intr(opt):
# load camera
f = 1.3875
K = torch.tensor([[f*opt.W, 0, opt.W/2],
[0, f*opt.H, opt.H/2],
[0, 0, 1]]).float()
return K
def get_pixel_grid(H, W, device='cuda'):
y_range = torch.arange(H, dtype=torch.float32).to(device)
x_range = torch.arange(W, dtype=torch.float32).to(device)
Y, X = torch.meshgrid(y_range, x_range, indexing='ij')
Z = torch.ones_like(Y).to(device)
xyz_grid = torch.stack([X, Y, Z],dim=-1).view(-1,3)
return xyz_grid
def unproj_depth(depth, intr):
'''
depth: [B, H, W]
intr: [B, 3, 3]
'''
batch_size, H, W = depth.shape
intr = intr.to(depth.device)
# [B, 3, 3]
K_inv = torch.linalg.inv(intr).float()
# [1, H*W,3]
pixel_grid = get_pixel_grid(H, W, depth.device).unsqueeze(0)
# [B, H*W,3]
pixel_grid = pixel_grid.repeat(batch_size, 1, 1)
# [B, 3, H*W]
ray_dirs = K_inv @ pixel_grid.permute(0, 2, 1).contiguous()
# [B, H*W, 3], in camera coordinates
seen_points = ray_dirs.permute(0, 2, 1).contiguous() * depth.view(batch_size, H*W, 1)
# [B, H, W, 3]
seen_points = seen_points.view(batch_size, H, W, 3)
return seen_points
def prepare_data(opt):
datadir = opt.datadir
image_names = [name for name in os.listdir(os.path.join(datadir, 'images'))
if name.endswith('.png') or name.endswith('.jpg')]
mask_names = [name[:-4]+'.png' for name in image_names]
len_data = len(image_names)
data_list = []
for i in range(len_data):
image_name = image_names[i]
mask_name = mask_names[i]
rgb_input_map, mask_input_map = get_image(opt, image_name, mask_name)
intr = get_intr(opt)
# prepare data
var = edict()
var.rgb_input_map = rgb_input_map.unsqueeze(0).to(opt.device)
var.mask_input_map = mask_input_map.unsqueeze(0).to(opt.device)
var.intr = intr.unsqueeze(0).to(opt.device)
var.idx = torch.tensor([i+1]).to(opt.device).long()
var.pose_gt = False
if opt.task == 'depth':
var.mask_eroded = erode_mask(mask_input_map.squeeze(0), iterations=4).view_as(mask_input_map).to(opt.device)
data_list.append(var)
name_list = [name[:-4] for name in image_names]
return data_list, name_list
@torch.no_grad()
def marching_cubes(opt, var, impl_network, visualize_attn=False):
points_3D = get_dense_3D_grid(opt, var) # [B, N, N, N, 3]
level_vox, attn_vis = compute_level_grid(opt, impl_network, var.latent_depth, var.latent_semantic,
points_3D, var.rgb_input_map, visualize_attn)
if attn_vis: var.attn_vis = attn_vis
# occ_grids: a list of length B, each is [N, N, N]
*level_grids, = level_vox.cpu().numpy()
meshes = convert_to_explicit(opt, level_grids, isoval=0.5, to_pointcloud=False)
var.mesh_pred = meshes
return var
def main():
opt_cmd = options.parse_arguments(sys.argv[1:])
opt = options.set(opt_cmd=opt_cmd, safe_check=False)
opt.device = 0
# build model
task_ckpt = opt.yaml.split('/')[-1].split('.')[0]
if task_ckpt != opt.task:
raise ValueError('Detected different tasks between specified and the yaml, please double check!')
if opt.task == 'shape':
opt.pretrain.depth = None
opt.arch.depth.pretrained = None
module = importlib.import_module("model.compute_graph.graph_{}".format(opt.task))
graph = module.Graph(opt).to(opt.device)
# load checkpoint
checkpoint = torch.load(opt.ckpt, map_location=torch.device(opt.device))
ep, it, best_val = checkpoint["epoch"], checkpoint["iter"], checkpoint["best_val"]
print("resuming from epoch {} (iteration {}, best_val {:.4f})".format(ep+1, it, best_val))
graph.load_state_dict(checkpoint["graph"], strict=True)
graph.eval()
print('==> checkpoint loaded')
# load the data
data_list, name_list = prepare_data(opt)
print('==> sample data loaded from folder: {}'.format(opt.datadir))
# create the save dir
save_folder = os.path.join(opt.datadir, 'preds')
if os.path.isdir(save_folder):
shutil.rmtree(save_folder)
os.makedirs(save_folder)
opt.output_path = opt.datadir
# inference the model and save the results
progress_bar = tqdm(data_list)
for i, var in enumerate(progress_bar):
# forward
with torch.no_grad():
var = graph.forward(opt, var, training=False, get_loss=False)
if opt.task == 'shape':
var = marching_cubes(opt, var, graph.impl_network, visualize_attn=True)
# save the result
util_vis.dump_images(opt, [name_list[i]], "image_input", var.rgb_input_map, masks=None, from_range=(0, 1), folder='preds')
util_vis.dump_images(opt, [name_list[i]], "mask_input", var.mask_input_map, folder='preds')
util_vis.dump_attentions(opt, [name_list[i]], "attn", var.attn_vis, folder='preds')
util_vis.dump_meshes(opt, [name_list[i]], "mesh", var.mesh_pred, folder='preds')
util_vis.dump_meshes_viz(opt, [name_list[i]], "mesh_viz", var.mesh_pred, save_frames=False, folder='preds') # image frames + gifs
elif opt.task == 'depth':
# [B, H, W, 3]
seen_surface_fixed = unproj_depth(var.depth_pred.squeeze(1), var.intr)
seen_surface_pred = unproj_depth(var.depth_pred.squeeze(1), var.intr_pred)
validity_mask = var.mask_input_map.view(seen_surface_pred.shape[0], seen_surface_pred.shape[1], seen_surface_pred.shape[2], 1)
seen_surface_fixed = seen_surface_fixed * validity_mask + (1 - validity_mask) * -1
seen_surface_pred = seen_surface_pred * validity_mask + (1 - validity_mask) * -1
util_vis.dump_images(opt, [name_list[i]], "image_input", var.rgb_input_map, masks=None, from_range=(0, 1), folder='preds')
util_vis.dump_images(opt, [name_list[i]], "mask_input", var.mask_input_map, folder='preds')
util_vis.dump_depths(opt, [name_list[i]], "depth_est", var.depth_pred, var.mask_input_map, rescale=True, folder='preds')
util_vis.dump_seen_surface(opt, [name_list[i]], "seen_surface_fixed", "image_input", seen_surface_fixed, folder='preds')
util_vis.dump_seen_surface(opt, [name_list[i]], "seen_surface_pred", "image_input", seen_surface_pred, folder='preds')
print('==> results saved at folder: {}/preds'.format(opt.datadir))
if __name__ == "__main__":
main()