forked from Luo-SynBioLab/UniKP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPreKcat_pH.py
136 lines (128 loc) · 5.16 KB
/
PreKcat_pH.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch
from build_vocab import WordVocab
from pretrain_trfm import TrfmSeq2seq
from utils import split
import json
from transformers import T5EncoderModel, T5Tokenizer
import re
import gc
from sklearn import metrics
from sklearn.ensemble import ExtraTreesRegressor
import numpy as np
import pandas as pd
from sklearn.model_selection import KFold
from sklearn.metrics import mean_squared_error, mean_absolute_error
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
import random
import pickle
import math
def smiles_to_vec(Smiles):
pad_index = 0
unk_index = 1
eos_index = 2
sos_index = 3
mask_index = 4
vocab = WordVocab.load_vocab('vocab.pkl')
def get_inputs(sm):
seq_len = 220
sm = sm.split()
if len(sm)>218:
print('SMILES is too long ({:d})'.format(len(sm)))
sm = sm[:109]+sm[-109:]
ids = [vocab.stoi.get(token, unk_index) for token in sm]
ids = [sos_index] + ids + [eos_index]
seg = [1]*len(ids)
padding = [pad_index]*(seq_len - len(ids))
ids.extend(padding), seg.extend(padding)
return ids, seg
def get_array(smiles):
x_id, x_seg = [], []
for sm in smiles:
a,b = get_inputs(sm)
x_id.append(a)
x_seg.append(b)
return torch.tensor(x_id), torch.tensor(x_seg)
trfm = TrfmSeq2seq(len(vocab), 256, len(vocab), 4)
trfm.load_state_dict(torch.load('trfm_12_23000.pkl'))
trfm.eval()
x_split = [split(sm) for sm in Smiles]
xid, xseg = get_array(x_split)
X = trfm.encode(torch.t(xid))
return X
def Seq_to_vec(Sequence):
for i in range(len(Sequence)):
if len(Sequence[i]) > 1000:
Sequence[i] = Sequence[i][:500] + Sequence[i][-500:]
sequences_Example = []
for i in range(len(Sequence)):
zj = ''
for j in range(len(Sequence[i]) - 1):
zj += Sequence[i][j] + ' '
zj += Sequence[i][-1]
sequences_Example.append(zj)
tokenizer = T5Tokenizer.from_pretrained("prot_t5_xl_uniref50", do_lower_case=False)
model = T5EncoderModel.from_pretrained("prot_t5_xl_uniref50")
gc.collect()
print(torch.cuda.is_available())
# 'cuda:0' if torch.cuda.is_available() else
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
model = model.eval()
features = []
for i in range(len(sequences_Example)):
print('For sequence ', str(i+1))
sequences_Example_i = sequences_Example[i]
sequences_Example_i = [re.sub(r"[UZOB]", "X", sequences_Example_i)]
ids = tokenizer.batch_encode_plus(sequences_Example_i, add_special_tokens=True, padding=True)
input_ids = torch.tensor(ids['input_ids']).to(device)
attention_mask = torch.tensor(ids['attention_mask']).to(device)
with torch.no_grad():
embedding = model(input_ids=input_ids, attention_mask=attention_mask)
embedding = embedding.last_hidden_state.cpu().numpy()
for seq_num in range(len(embedding)):
seq_len = (attention_mask[seq_num] == 1).sum()
seq_emd = embedding[seq_num][:seq_len - 1]
features.append(seq_emd)
features_normalize = np.zeros([len(features), len(features[0][0])], dtype=float)
for i in range(len(features)):
for k in range(len(features[0][0])):
for j in range(len(features[i])):
features_normalize[i][k] += features[i][j][k]
features_normalize[i][k] /= len(features[i])
return features_normalize
def Kcat_predict(Ifeature, Label):
kf = KFold(n_splits=5, shuffle=True)
All_pre_label = []
All_real_label = []
for train_index, test_index in kf.split(Ifeature, Label):
Train_data, Train_label = Ifeature[train_index], Label[train_index]
Test_data, Test_label = Ifeature[test_index], Label[test_index]
model = ExtraTreesRegressor()
model.fit(Train_data, Train_label)
Pre_label = model.predict(Test_data)
All_pre_label.extend(Pre_label)
All_real_label.extend(Test_label)
res = pd.DataFrame({'Value': All_real_label, 'Predict_Label': All_pre_label})
res.to_excel('pH/pH_Kcat_5_cv.xlsx')
if __name__ == '__main__':
# Dataset Load
database = np.array(pd.read_excel('pH/Generated_pH_unified_smiles_636.xlsx')).T
sequence = database[1]
smiles = database[3]
pH = database[5].reshape([len(smiles), 1])
Label = database[4]
for i in range(len(Label)):
Label[i] = math.log(Label[i], 10)
print(max(Label), min(Label))
# Feature Extractor
# smiles_input = smiles_to_vec(smiles)
# sequence_input = Seq_to_vec(sequence)
# print(sequence_input.shape, sequence_input.shape, pH.shape)
# feature = np.concatenate((smiles_input, sequence_input, pH), axis=1)
# with open("pH/features_636_pH_PreKcat.pkl", "wb") as f:
# pickle.dump(feature, f)
with open("pH/features_636_pH_PreKcat.pkl", "rb") as f:
feature = pickle.load(f)
# Modelling
Kcat_predict(feature, Label)