-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtrain.py
91 lines (76 loc) · 3.71 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import logging
import mxnet as mx
import core.metric_cls_bbox as metric_cls_bbox
from mxnet.module.module import Module
from core.loader import ImageLoader
from core.imdb import IMDB
from tools.load_model import load_param
from config import config
def train_net(sym, prefix, ctx, pretrained, epoch, begin_epoch, end_epoch, imdb, batch_size, thread_num,
net=12, with_cls = True, with_bbox = True, frequent=50, initialize=True, base_lr=0.01, lr_epoch = [6,14]):
logger = logging.getLogger()
logger.setLevel(logging.INFO)
flip = True
train_data = ImageLoader(imdb, net, with_cls, with_bbox, batch_size, thread_num, flip, shuffle=True, ctx=ctx)
if not initialize:
args, auxs = load_param(pretrained, epoch, convert=True)
if initialize:
print "init weights and bias:"
data_shape_dict = dict(train_data.provide_data + train_data.provide_label)
arg_shape, _, aux_shape = sym.infer_shape(**data_shape_dict)
arg_shape_dict = dict(zip(sym.list_arguments(), arg_shape))
aux_shape_dict = dict(zip(sym.list_auxiliary_states(), aux_shape))
init = mx.init.Xavier(factor_type="in", rnd_type='gaussian', magnitude=2)
args = dict()
auxs = dict()
print 'hello3'
for k in sym.list_arguments():
if k in data_shape_dict:
continue
#print 'init', k
args[k] = mx.nd.zeros(arg_shape_dict[k])
init(k, args[k])
if k.startswith('fc'):
args[k][:] /= 10
'''
if k.endswith('weight'):
if k.startswith('conv'):
args[k] = mx.random.normal(loc=0, scale=0.001, shape=arg_shape_dict[k])
else:
args[k] = mx.random.normal(loc=0, scale=0.01, shape=arg_shape_dict[k])
else: # bias
args[k] = mx.nd.zeros(shape=arg_shape_dict[k])
'''
for k in sym.list_auxiliary_states():
auxs[k] = mx.nd.zeros(aux_shape_dict[k])
#print aux_shape_dict[k]
init(k, auxs[k])
lr_factor = 0.1
image_num = len(imdb)
if flip:
image_num = image_num*2
lr_epoch_diff = [epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch]
lr = base_lr * (lr_factor ** (len(lr_epoch) - len(lr_epoch_diff)))
lr_iters = [int(epoch * image_num / batch_size) for epoch in lr_epoch_diff]
print 'lr', lr, 'lr_epoch', lr_epoch, 'lr_epoch_diff', lr_epoch_diff
lr_scheduler = mx.lr_scheduler.MultiFactorScheduler(lr_iters, lr_factor)
data_names = [k[0] for k in train_data.provide_data]
label_names = [k[0] for k in train_data.provide_label]
batch_end_callback = mx.callback.Speedometer(train_data.batch_size, frequent=frequent)
epoch_end_callback = mx.callback.do_checkpoint(prefix)
eval_metrics = mx.metric.CompositeEvalMetric()
if with_cls and with_bbox:
eval_metrics.add(metric_cls_bbox.Accuracy())
eval_metrics.add(metric_cls_bbox.LogLoss())
eval_metrics.add(metric_cls_bbox.BBOX_MSE())
eval_metrics.add(metric_cls_bbox.BBOX_L1())
optimizer_params = {'momentum': 0.9,
'wd': 0.00001,
'learning_rate': lr,
'lr_scheduler': lr_scheduler,
'rescale_grad': 1.0}
mod = Module(sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx)
mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback,
batch_end_callback=batch_end_callback,
optimizer='sgd', optimizer_params=optimizer_params,
arg_params=args, aux_params=auxs, begin_epoch=begin_epoch, num_epoch=end_epoch)