输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历结果。如果是则返回 true
,否则返回 false
。假设输入的数组的任意两个数字都互不相同。
参考以下这颗二叉搜索树:
5 / \ 2 6 / \ 1 3
示例 1:
输入: [1,6,3,2,5] 输出: false
示例 2:
输入: [1,3,2,6,5] 输出: true
提示:
数组长度 <= 1000
二叉搜索树的后序遍历序列是 [左子树, 右子树, 根结点]
,且左子树结点值均小于根结点,右子树结点值均大于根结点,递归判断即可。
class Solution:
def verifyPostorder(self, postorder: List[int]) -> bool:
def dfs(postorder):
if not postorder:
return True
v = postorder[-1]
i = 0
while i < len(postorder) and postorder[i] < v:
i += 1
if any(x < v for x in postorder[i:]):
return False
return dfs(postorder[:i]) and dfs(postorder[i:-1])
return dfs(postorder)
class Solution {
public boolean verifyPostorder(int[] postorder) {
if (postorder == null || postorder.length < 2) {
return true;
}
return dfs(postorder, 0, postorder.length);
}
private boolean dfs(int[] postorder, int i, int n) {
if (n <= 0) {
return true;
}
int v = postorder[i + n - 1];
int j = i;
while (j < i + n && postorder[j] < v) {
++j;
}
for (int k = j; k < i + n; ++k) {
if (postorder[k] < v) {
return false;
}
}
return dfs(postorder, i, j - i) && dfs(postorder, j, n + i - j - 1);
}
}
/**
* @param {number[]} postorder
* @return {boolean}
*/
var verifyPostorder = function (postorder) {
if (postorder.length < 2) return true;
function dfs(i, n) {
if (n <= 0) return true;
const v = postorder[i + n - 1];
let j = i;
while (j < i + n && postorder[j] < v) ++j;
for (let k = j; k < i + n; ++k) {
if (postorder[k] < v) {
return false;
}
}
return dfs(i, j - i) && dfs(j, n + i - j - 1);
}
return dfs(0, postorder.length);
};
func verifyPostorder(postorder []int) bool {
if len(postorder) < 2 {
return true
}
var dfs func(i, n int) bool
dfs = func(i, n int) bool {
if n <= 0 {
return true
}
v := postorder[i+n-1]
j := i
for j < i+n && postorder[j] < v {
j++
}
for k := j; k < i+n; k++ {
if postorder[k] < v {
return false
}
}
return dfs(i, j-i) && dfs(j, n+i-j-1)
}
return dfs(0, len(postorder))
}
class Solution {
public:
bool verifyPostorder(vector<int>& postorder) {
if (postorder.size() < 2) return true;
return dfs(postorder, 0, postorder.size());
}
bool dfs(vector<int>& postorder, int i, int n) {
if (n <= 0) return 1;
int v = postorder[i + n - 1];
int j = i;
while (j < i + n && postorder[j] < v) ++j;
for (int k = j; k < i + n; ++k)
if (postorder[k] < v)
return 0;
return dfs(postorder, i, j - i) && dfs(postorder, j, n + i - j - 1);
}
};