forked from haotian-liu/LLaVA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_clip.py
184 lines (159 loc) · 7.41 KB
/
train_clip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import argparse
from PIL import Image
import torch
from torch import nn
from torch.utils.data import Dataset
from transformers import TrainingArguments, Trainer
from transformers import CLIPVisionConfig, CLIPVisionModel, CLIPImageProcessor, CLIPPreTrainedModel
from transformers.utils import ModelOutput
from torchvision.transforms import CenterCrop,Compose,Lambda,Normalize,RandomHorizontalFlip,RandomResizedCrop,Resize,ToTensor
from sklearn.metrics import accuracy_score, classification_report
class PatchSet(Dataset):
def __init__(self, image_dir, label_dir, key, transform):
self.image_dir, self.label_dir = image_dir, label_dir
self.key, self.transform = key, transform
image_list = os.listdir(image_dir)
self.data = []
if len(image_list) > 50000:
for image in image_list:
self.data.append((image, os.path.splitext(image)[0]+'.pth'))
else:
for image in image_list:
label = torch.load(os.path.join(label_dir, os.path.splitext(image)[0]+'.pth'))[key]
self.data.append((image, label))
def __len__(self):
return len(self.data)
def __getitem__(self, index):
image, label = self.data[index]
if isinstance(label, str):
label = torch.load(os.path.join(self.label_dir, os.path.splitext(image)[0]+'.pth'))[self.key]
image = self.transform(Image.open(os.path.join(self.image_dir, image)))
return dict(pixel_values=image, labels=label.to(torch.long))
class ClipForVisionTokenClassification(CLIPPreTrainedModel):
config_class = CLIPVisionConfig
base_model_prefix = "vision_tower"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, CLIPVisionModel):
module.gradient_checkpointing = value
def __init__(self, config, num_classes=2, select_layer=-2, train_encoder=True):
super().__init__(config)
self.config.num_classes = num_classes
self.config.select_layer = select_layer
self.vision_tower = CLIPVisionModel(config)
self.vision_tower.requires_grad_(train_encoder)
self.head = nn.Linear(config.hidden_size, num_classes)
self.post_init()
def forward(self, pixel_values, labels=None, return_dict=True):
image_forward_outs = self.vision_tower(pixel_values, output_hidden_states=True, return_dict=True)
image_features = image_forward_outs.hidden_states[self.config.select_layer][:, 1:] #[B, L, D]
logits = self.head(image_features) #[B, L, num_classes]
loss = None
if labels is not None:
loss = torch.nn.functional.cross_entropy(logits.transpose(1,2), labels)
if not return_dict:
output = (logits,)
return (loss,) + output if loss is not None else output
return ModelOutput(loss=loss, logits=logits)
def collate_fn(examples):
pixel_values = torch.stack([example["pixel_values"] for example in examples])
labels = torch.stack([example["labels"] for example in examples])
return {"pixel_values": pixel_values, "labels": labels}
def preprocess_logits(logits, labels):
return logits.argmax(dim=-1)
def compute_metrics(p):
assert p.label_ids.shape == p.predictions.shape, f'p.predictions: {p.predictions.shape}, p.label_ids: {p.label_ids.shape}'
print(f'{classification_report(y_true=p.label_ids.reshape(-1), y_pred=p.predictions.reshape(-1), digits=4)}')
return {'accuracy': accuracy_score(y_true=p.label_ids.reshape(-1), y_pred=p.predictions.reshape(-1))}
def train(args):
model = ClipForVisionTokenClassification.from_pretrained(args.model)
image_processor = CLIPImageProcessor.from_pretrained(args.model)
# Define torchvision transforms to be applied to each image.
if "shortest_edge" in image_processor.size:
size = image_processor.size["shortest_edge"]
else:
size = (image_processor.size["height"], image_processor.size["width"])
normalize = (
Normalize(mean=image_processor.image_mean, std=image_processor.image_std)
if hasattr(image_processor, "image_mean") and hasattr(image_processor, "image_std")
else Lambda(lambda x: x)
)
train_transforms = Compose([
RandomResizedCrop(size),
RandomHorizontalFlip(),
ToTensor(),
normalize,
])
val_transforms = Compose([
Resize(size),
CenterCrop(size),
ToTensor(),
normalize,
])
train_dataset = PatchSet(os.path.join(args.image_dir, 'train'),
os.path.join(args.label_dir, 'train'),
(model.config.image_size // model.config.patch_size) ** 2,
train_transforms)
val_dataset = PatchSet(os.path.join(args.image_dir, 'val'),
os.path.join(args.label_dir, 'val'),
(model.config.image_size // model.config.patch_size) ** 2,
val_transforms)
training_args = TrainingArguments(
output_dir=args.output,
logging_dir=os.path.join(args.output, 'logs'),
report_to='tensorboard',
evaluation_strategy='epoch',
num_train_epochs=args.epoch,
per_device_train_batch_size=args.batch_size//torch.cuda.device_count(),
per_device_eval_batch_size=args.batch_size//torch.cuda.device_count(),
learning_rate=1e-3,
lr_scheduler_type='cosine',
warmup_ratio=0.1,
logging_steps=1,
save_strategy='epoch',
save_total_limit=3,
load_best_model_at_end=True,
metric_for_best_model='accuracy',
do_train=True,
do_eval=True,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
tokenizer=image_processor,
data_collator=collate_fn,
preprocess_logits_for_metrics=preprocess_logits,
compute_metrics=compute_metrics,
)
# Training
if training_args.do_train:
# checkpoint = None
# if training_args.resume_from_checkpoint is not None:
# checkpoint = training_args.resume_from_checkpoint
# elif last_checkpoint is not None:
# checkpoint = last_checkpoint
# train_result = trainer.train(resume_from_checkpoint=checkpoint)
train_result = trainer.train()
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
metrics = trainer.evaluate()
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--image_dir", type=str, default='/medical-data/zsxm/datasets/liverWSI/edge08/images')
parser.add_argument("--label_dir", type=str, default='/medical-data/zsxm/datasets/liverWSI/edge08/labels')
parser.add_argument("--model", type=str, default="checkpoints/clip-vit-large-patch14-336")
parser.add_argument("--output", type=str, default="./checkpoints/ztestCLIP/trainall_clip-vit-large-patch14-336_edge08_epoch30")
parser.add_argument("--epoch", type=int, default=30)
parser.add_argument("--batch_size", type=int, default=8)
args = parser.parse_args()
train(args)