forked from fengdu78/Coursera-ML-AndrewNg-Notes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path10 - 7 - Deciding What to Do Next Revisited (7 min).srt
996 lines (797 loc) · 19.4 KB
/
10 - 7 - Deciding What to Do Next Revisited (7 min).srt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
1
00:00:00,260 --> 00:00:01,340
We've talked about how to evaluate
我们已经介绍了怎样评价一个学习算法
(字幕整理:中国海洋大学 黄海广,haiguang2000@qq.com )
2
00:00:01,960 --> 00:00:03,360
learning algorithms, talked about model selection,
我们讨论了模型选择问题
3
00:00:04,150 --> 00:00:06,490
talked a lot about bias and variance.
偏差和方差的问题
4
00:00:06,970 --> 00:00:08,110
So how does this help us figure
那么这些诊断法则怎样帮助我们弄清
5
00:00:08,330 --> 00:00:09,730
out what are potentially fruitful,
哪些方法有助于
6
00:00:10,340 --> 00:00:11,710
potentially not fruitful things to
改进学习算法的效果
7
00:00:11,950 --> 00:00:13,980
try to do to improve the performance of a learning algorithm.
哪些又是徒劳的呢
8
00:00:15,480 --> 00:00:16,660
Let's go back to our original
让我们再次回到最开始的例子
9
00:00:16,940 --> 00:00:18,890
motivating example and go for the result.
在那里寻找答案
10
00:00:21,030 --> 00:00:22,570
So here is our earlier example
这就是我们之前的例子
11
00:00:23,000 --> 00:00:24,120
of maybe having fit regularized
我们试图用正则化的线性回归拟合模型
12
00:00:24,720 --> 00:00:27,640
linear regression and finding that it doesn't work as well as we're hoping.
并评价该算法是否达到预期效果
13
00:00:28,300 --> 00:00:30,080
We said that we had this menu of options.
我们提出了如下这些选择
14
00:00:30,910 --> 00:00:32,430
So is there some way to
那么到底有没有某种方法
15
00:00:32,590 --> 00:00:34,530
figure out which of these might be fruitful options?
能够明确指出以上哪些方法有效呢
16
00:00:35,480 --> 00:00:36,490
The first thing all of this
第一种可供选择的方法
17
00:00:36,660 --> 00:00:38,770
was getting more training examples.
是使用更多的训练集数据
18
00:00:39,550 --> 00:00:40,700
What this is good for,
这种方法对于高方差的情况
19
00:00:40,880 --> 00:00:42,890
is this helps to fix high variance.
是有帮助的
20
00:00:45,320 --> 00:00:46,610
And concretely, if you instead
也就是说
21
00:00:47,150 --> 00:00:48,550
have a high bias problem and
如果你的模型不处于高方差问题
22
00:00:48,680 --> 00:00:50,530
don't have any variance problem, then
而是高偏差的时候
23
00:00:50,830 --> 00:00:52,000
we saw in the previous video
那么通过前面的视频
24
00:00:52,500 --> 00:00:53,560
that getting more training examples,
我们已经知道 获取更多的训练集数据
25
00:00:54,640 --> 00:00:56,380
while maybe just isn't going to help much at all.
并不会有太明显的帮助
26
00:00:57,360 --> 00:00:58,320
So the first option is useful
所以 要选择第一种方法
27
00:00:58,780 --> 00:01:00,230
only if you, say, plot
你应该先画出
28
00:01:00,580 --> 00:01:01,620
the learning curves and figure
学习曲线
29
00:01:01,720 --> 00:01:02,820
out that you have at least
然后看出你的模型
30
00:01:02,860 --> 00:01:03,970
a bit of a variance, meaning that
应该至少有那么一点方差问题
31
00:01:04,170 --> 00:01:06,530
the cross-validation error is, you know,
也就是说你的交叉验证集误差
32
00:01:06,680 --> 00:01:08,800
quite a bit bigger than your training set error.
应该比训练集误差大一点
33
00:01:08,910 --> 00:01:10,400
How about trying a smaller set of features?
第二种方法情况又如何呢
34
00:01:10,940 --> 00:01:11,920
Well, trying a smaller
第二种方法是
35
00:01:12,350 --> 00:01:13,570
set of features, that's again
少选几种特征
36
00:01:13,970 --> 00:01:16,060
something that fixes high variance.
这同样是对高方差时有效
37
00:01:17,100 --> 00:01:18,080
And in other words, if you figure
换句话说
38
00:01:18,420 --> 00:01:19,440
out, by looking at learning curves
如果你通过绘制学习曲线
39
00:01:19,820 --> 00:01:20,830
or something else that you used,
或者别的什么方法
40
00:01:21,190 --> 00:01:22,110
that have a high bias
看出你的模型处于高偏差问题
41
00:01:22,370 --> 00:01:23,460
problem; then for goodness
那么切记
42
00:01:23,670 --> 00:01:25,000
sakes, don't waste your time
千万不要浪费时间
43
00:01:25,540 --> 00:01:27,250
trying to carefully select out
试图从已有的特征中
44
00:01:27,450 --> 00:01:29,130
a smaller set of features to use.
挑出一小部分来使用
45
00:01:29,330 --> 00:01:31,190
Because if you have a high bias problem, using
因为你已经发现高偏差的问题了
46
00:01:32,060 --> 00:01:33,220
fewer features is not going to help.
使用更少的特征仍然无济于事
47
00:01:33,890 --> 00:01:35,270
Whereas in contrast, if you
反过来 如果你发现
48
00:01:35,490 --> 00:01:36,730
look at the learning curves or something
从你的学习曲线
49
00:01:36,900 --> 00:01:38,020
else you figure out that you
或者别的某种诊断图中
50
00:01:38,360 --> 00:01:39,780
have a high variance problem, then,
你看出了高方差的问题
51
00:01:40,320 --> 00:01:41,730
indeed trying to select
那么恭喜你
52
00:01:42,160 --> 00:01:43,180
out a smaller set of features,
花点时间挑选出一小部分合适的特征吧
53
00:01:43,440 --> 00:01:45,380
that might indeed be a very good use of your time.
这是把时间用在了刀刃上
54
00:01:45,790 --> 00:01:47,120
How about trying to get additional
方法三 选用更多的特征又如何呢
55
00:01:47,710 --> 00:01:49,640
features, adding features, usually,
通常来讲
56
00:01:50,170 --> 00:01:51,380
not always, but usually we
不是所有时候都适用
57
00:01:51,490 --> 00:01:53,020
think of this as a solution
但通常来说 增加特征数
58
00:01:54,070 --> 00:01:56,920
for fixing high bias problems.
是解决高偏差问题的法宝
59
00:01:57,600 --> 00:01:58,700
So if you are adding extra
所以如果你要增加
60
00:01:58,980 --> 00:02:00,640
features it's usually because
更多的特征时
61
00:02:01,750 --> 00:02:03,150
your current hypothesis is too
一般是由于你现有的
62
00:02:03,280 --> 00:02:04,280
simple, and so we want
假设函数太简单
63
00:02:04,540 --> 00:02:06,520
to try to get additional features to
因此我们才决定增加一些
64
00:02:06,730 --> 00:02:08,540
make our hypothesis better able
别的特征来让假设函数
65
00:02:09,060 --> 00:02:10,800
to fit the training set. And
更好地拟合训练集
66
00:02:11,420 --> 00:02:13,460
similarly, adding polynomial features;
接下来 类似地
67
00:02:13,770 --> 00:02:14,930
this is another way of adding
增加更多的多项式特征
68
00:02:15,140 --> 00:02:16,420
features and so there
这实际上也是属于增加特征
69
00:02:16,570 --> 00:02:18,220
is another way to try
因此也是用于
70
00:02:18,430 --> 00:02:19,950
to fix the high bias problem.
修正高偏差问题
71
00:02:21,020 --> 00:02:22,820
And, if concretely if
具体来说
72
00:02:23,210 --> 00:02:24,350
your learning curves show you
如果你画出的学习曲线告诉你
73
00:02:24,570 --> 00:02:25,410
that you still have a high
你还是处于高方差问题
74
00:02:25,520 --> 00:02:27,190
variance problem, then, you know, again this
那么采取这种方法
75
00:02:27,320 --> 00:02:29,360
is maybe a less good use of your time.
依然是浪费时间
76
00:02:30,640 --> 00:02:32,690
And finally, decreasing and increasing lambda.
最后 增大和减小lambda
77
00:02:33,200 --> 00:02:34,090
This are quick and easy to try,
这种方法尝试起来最方便
78
00:02:34,470 --> 00:02:36,000
I guess these are less likely to
我想尝试这个方法
79
00:02:36,140 --> 00:02:38,190
be a waste of, you know, many months of your life.
不至于花费你几个月时间
80
00:02:39,070 --> 00:02:41,530
But decreasing lambda, you
但我们已经知道
81
00:02:41,650 --> 00:02:43,400
already know fixes high bias.
减小lambda可以修正高偏差
82
00:02:45,360 --> 00:02:46,340
In case this isn't clear to
如果我说的你还不清楚的话
83
00:02:46,500 --> 00:02:47,340
you, you know, I do encourage
我建议你暂停视频
84
00:02:47,810 --> 00:02:50,350
you to pause the video and think through this that
仔细回忆一下
85
00:02:50,990 --> 00:02:52,790
convince yourself that decreasing lambda
减小lambda的值
86
00:02:53,620 --> 00:02:55,030
helps fix high bias, whereas increasing
有助于修正高偏差
87
00:02:55,590 --> 00:02:57,480
lambda fixes high variance.
而增大lambda的值解决高方差
88
00:02:59,870 --> 00:03:00,930
And if you aren't sure why
如果你确实不明白
89
00:03:01,270 --> 00:03:02,470
this is the case, do
为什么是这样的话
90
00:03:02,650 --> 00:03:04,130
pause the video and make
那就暂停一下好好想想
91
00:03:04,150 --> 00:03:05,820
sure you can convince yourself that this is the case.
直到真的弄清楚这个道理
92
00:03:06,580 --> 00:03:07,320
Or take a look at the curves
或者看看
93
00:03:07,800 --> 00:03:09,040
that we were plotting at the
上一节视频最后
94
00:03:09,190 --> 00:03:10,590
end of the previous video and
我们绘制的学习曲线
95
00:03:10,720 --> 00:03:11,650
try to make sure you understand
试着理解清楚
96
00:03:12,170 --> 00:03:13,670
why these are the case.
为什么是我说的那样
97
00:03:15,080 --> 00:03:16,120
Finally, let us take everything
最后 我们回顾一下
98
00:03:16,440 --> 00:03:17,840
we have learned and relate it back
这几节课介绍的这些内容
99
00:03:18,400 --> 00:03:19,980
to neural networks and so,
并且看看它们和神经网络的联系
100
00:03:20,130 --> 00:03:21,190
here is some practical
我想介绍一些
101
00:03:21,720 --> 00:03:22,720
advice for how I usually
很实用的经验或建议
102
00:03:23,520 --> 00:03:25,060
choose the architecture or the
这些来自于我平时为神经网络模型
103
00:03:25,530 --> 00:03:28,660
connectivity pattern of the neural networks I use.
选择结构或者连接形式的一些技巧
104
00:03:30,070 --> 00:03:31,190
So, if you are fitting
当你在进行神经网络拟合的时候
105
00:03:31,410 --> 00:03:33,160
a neural network, one option would
你可以选择一种
106
00:03:33,400 --> 00:03:34,680
be to fit, say, a pretty
比如说
107
00:03:34,840 --> 00:03:36,540
small neural network with you know, relatively
一个相对比较简单的神经网络模型
108
00:03:37,530 --> 00:03:38,670
few hidden units, maybe just
相对来讲 隐藏单元比较少
109
00:03:38,930 --> 00:03:40,430
one hidden unit. If you're fitting
或者甚至只有一个隐藏单元
110
00:03:40,890 --> 00:03:42,670
a neural network, one option would
如果你要进行神经网络的拟合
111
00:03:42,800 --> 00:03:44,440
be to fit a relatively small
其中一个选择是
112
00:03:44,920 --> 00:03:46,500
neural network with, say,
选用一个相对简单的网络结构
113
00:03:48,030 --> 00:03:49,630
relatively few, maybe only one
比如说只有一个
114
00:03:49,980 --> 00:03:51,760
hidden layer and maybe
隐藏层
115
00:03:52,070 --> 00:03:53,370
only a relatively few number
或者可能相对来讲
116
00:03:53,750 --> 00:03:55,160
of hidden units.
比较少的隐藏单元
117
00:03:55,570 --> 00:03:56,580
So, a network like this might have relatively
因此像这样的一个简单的神经网络
118
00:03:57,050 --> 00:03:59,170
few parameters and be more prone to underfitting.
参数就不会很多 并且很容易出现欠拟合
119
00:04:00,450 --> 00:04:01,850
The main advantage of these small
这种比较小型的神经网络
120
00:04:02,260 --> 00:04:04,760
neural networks is that the computation will be cheaper.
其最大优势在于计算量较小
121
00:04:05,820 --> 00:04:06,910
An alternative would be to
与之相对的另一种情况
122
00:04:07,010 --> 00:04:08,470
fit a, maybe relatively large
是相对较大型的神经网络结构
123
00:04:08,900 --> 00:04:10,790
neural network with either more
隐藏层单元会比较多
124
00:04:10,970 --> 00:04:12,370
hidden units--there's a lot
比如每一层中的隐藏单元数很多
125
00:04:12,560 --> 00:04:14,940
of hidden in one there--or with more hidden layers.
或者有很多个隐藏层
126
00:04:16,200 --> 00:04:17,800
And so these neural networks tend
因此这种比较复杂的神经网络
127
00:04:18,010 --> 00:04:20,870
to have more parameters and therefore be more prone to overfitting.
参数一般较多 也更容易出现过拟合
128
00:04:22,410 --> 00:04:24,010
One disadvantage, often not a
这种结构的一大劣势
129
00:04:24,050 --> 00:04:25,160
major one but something to
也许不是主要的 但还是需要考虑
130
00:04:25,250 --> 00:04:26,440
think about, is that if you have
那就是当网络中的
131
00:04:27,000 --> 00:04:28,450
a large number of neurons
神经元数量很多的时候
132
00:04:28,960 --> 00:04:30,040
in your network, then it can
这种结构会显得
133
00:04:30,230 --> 00:04:31,920
be more computationally expensive.
计算量较为庞大
134
00:04:33,070 --> 00:04:35,790
Although within reason, this is often hopefully not a huge problem.
虽然有这个情况 但通常来讲不成问题
135
00:04:36,840 --> 00:04:38,420
The main potential problem of
这种大型网络结构最主要的问题
136
00:04:38,540 --> 00:04:39,710
these much larger neural networks is that it could be more prone to overfitting
还是它更容易出现过拟合现象
137
00:04:39,980 --> 00:04:44,120
and it turns out if you're applying neural
事实上 如果你经常应用神经网络
138
00:04:44,700 --> 00:04:46,900
network very often using
特别是大型神经网络的话
139
00:04:47,240 --> 00:04:48,900
a large neural network often it's actually the larger, the better
你就会发现越大型的网络性能越好
140
00:04:50,610 --> 00:04:51,700
but if it's overfitting, you can
但如果发生了过拟合
141
00:04:51,890 --> 00:04:53,800
then use regularization to address
你可以使用正则化的方法
142
00:04:54,230 --> 00:04:56,510
overfitting, usually using
来修正过拟合
143
00:04:56,910 --> 00:04:58,480
a larger neural network by using
一般来说 使用一个大型的神经网络
144
00:04:58,720 --> 00:04:59,980
regularization to address is
并使用正则化来修正过拟合问题
145
00:05:00,310 --> 00:05:01,910
overfitting that's often more
通常比使用一个小型的神经网络
146
00:05:02,130 --> 00:05:04,160
effective than using a smaller neural network.
效果更好
147
00:05:05,100 --> 00:05:06,940
And the main possible disadvantage is
但主要可能出现的一大问题
148
00:05:07,130 --> 00:05:09,420
that it can be more computationally expensive.
就是计算量相对较大
149
00:05:10,470 --> 00:05:11,940
And finally, one of the other decisions is, say,
最后 你还需要选择的
150
00:05:12,280 --> 00:05:14,340
the number of hidden layers you want to have, right?
是隐藏层的层数
151
00:05:14,480 --> 00:05:16,400
So, do you want
你是应该用一个
152
00:05:17,030 --> 00:05:18,130
one hidden layer or do
隐藏层呢
153
00:05:18,380 --> 00:05:19,700
you want three hidden layers, as
还是应该用三个呢 就像我们这里画的
154
00:05:20,040 --> 00:05:21,790
we've shown here, or do you want two hidden layers?
或者还是用两个隐藏层呢
155
00:05:23,250 --> 00:05:24,850
And usually, as I
通常来说
156
00:05:24,980 --> 00:05:25,720
think I said in the previous
正如我在前面的视频中讲过的
157
00:05:26,190 --> 00:05:27,420
video, using a single
默认的情况是
158
00:05:27,640 --> 00:05:29,570
hidden layer is a reasonable default, but
使用一个隐藏层是比较合理的选择
159
00:05:29,780 --> 00:05:30,800
if you want to choose the
但是如果你想要选择
160
00:05:30,890 --> 00:05:32,400
number of hidden layers, one
一个最合适的隐藏层层数
161
00:05:32,580 --> 00:05:33,610
other thing you can try is
你也可以试试
162
00:05:34,270 --> 00:05:35,800
find yourself a training cross-validation,
把数据分割为训练集 验证集
163
00:05:36,660 --> 00:05:38,320
and test set split and try
和测试集 然后试试使用
164
00:05:38,730 --> 00:05:40,070
training neural networks with one
一个隐藏层的神经网络来训练模型
165
00:05:40,260 --> 00:05:41,210
hidden layer or two hidden
然后试试两个 三个隐藏层
166
00:05:41,490 --> 00:05:42,810
layers or three hidden layers and
以此类推
167
00:05:43,230 --> 00:05:44,300
see which of those neural
然后看看哪个神经网络
168
00:05:44,460 --> 00:05:47,460
networks performs best on the cross-validation sets.
在交叉验证集上表现得最理想
169
00:05:48,180 --> 00:05:49,190
You take your three neural networks
也就是说 你得到了三个神经网络模型
170
00:05:49,660 --> 00:05:50,510
with one, two and three hidden
分别有一个 两个 三个隐藏层
171
00:05:50,780 --> 00:05:52,410
layers, and compute the
然后你对每一个模型
172
00:05:52,570 --> 00:05:53,870
cross validation error at Jcv
都用交叉验证集数据进行测试
173
00:05:54,140 --> 00:05:55,120
and all of
算出三种情况下的
174
00:05:55,240 --> 00:05:56,630
them and use that to
交叉验证集误差Jcv
175
00:05:56,960 --> 00:05:58,350
select which of these
然后选出你认为最好的
176
00:05:58,690 --> 00:06:00,290
is you think the best neural network.
神经网络结构
177
00:06:02,580 --> 00:06:04,020
So, that's it for
好的 以上就是我们介绍的
178
00:06:04,230 --> 00:06:05,490
bias and variance and ways
偏差和方差问题
179
00:06:05,780 --> 00:06:08,170
like learning curves, who tried to diagnose these problems.
以及如学习曲线这样的诊断法
180
00:06:08,560 --> 00:06:09,860
As far as what
在改进学习算法的表现时
181
00:06:09,930 --> 00:06:11,020
you think is implied, for one
你可以充分运用
182
00:06:11,250 --> 00:06:12,480
might be truthful or not
以上这些内容来判断
183
00:06:12,630 --> 00:06:13,500
truthful things to try
哪些途径是有帮助的
184
00:06:13,910 --> 00:06:15,720
to improve the performance of a learning algorithm.
哪些方法是无意义的
185
00:06:16,960 --> 00:06:18,000
If you understood the contents
如果你理解了以上几节视频中
186
00:06:18,990 --> 00:06:20,700
of the last few videos and if
介绍的内容
187
00:06:20,790 --> 00:06:22,020
you apply them you actually
并且懂得如何运用
188
00:06:22,630 --> 00:06:24,300
be much more effective already and
那么你已经很厉害了
189
00:06:24,430 --> 00:06:25,890
getting learning algorithms to work on problems
你也能像硅谷的
190
00:06:26,610 --> 00:06:27,970
and even a large fraction,
大部分机器学习专家一样
191
00:06:28,560 --> 00:06:29,810
maybe the majority of practitioners
他们每天的工作就是
192
00:06:30,540 --> 00:06:31,860
of machine learning here in
有效地使用这些学习算法
193
00:06:32,060 --> 00:06:34,760
Silicon Valley today doing these things as their full-time jobs.
来解决众多具体的问题
194
00:06:35,820 --> 00:06:37,560
So I hope that these
我希望这几节中
195
00:06:37,990 --> 00:06:39,110
pieces of advice
提到的一些技巧
196
00:06:39,560 --> 00:06:41,420
on by experience in diagnostics
关于方差 偏差 以及学习曲线为代表的诊断法
197
00:06:42,730 --> 00:06:44,110
will help you to much effectively
能够真正帮助你更有效率地
198
00:06:44,790 --> 00:06:47,270
and powerfully apply learning and
应用机器学习
199
00:06:48,000 --> 00:06:49,300
get them to work very well.
让它们高效地工作