-
Notifications
You must be signed in to change notification settings - Fork 34
/
pano_gen.py
389 lines (318 loc) · 11.9 KB
/
pano_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
'''
Reimplement post optimization code from https://github.com/zouchuhang/LayoutNet
'''
import numpy as np
import numpy.matlib as matlib
import scipy.signal
from scipy.ndimage import convolve
from scipy.ndimage import map_coordinates
from pano_opt import optimize_cor_id
def find_N_peaks(signal, prominence, distance, N=4):
locs, _ = scipy.signal.find_peaks(signal,
prominence=prominence,
distance=distance)
pks = signal[locs]
pk_id = np.argsort(-pks)
pk_loc = locs[pk_id[:min(N, len(pks))]]
pk_loc = np.sort(pk_loc)
return pk_loc, signal[pk_loc]
def constraint_cor_id_same_z(cor_id, cor_img, z=-1):
# Convert to uv space
cor_id_u = ((cor_id[:, 0] + 0.5) / cor_img.shape[1] - 0.5) * 2 * np.pi
cor_id_v = ((cor_id[:, 1] + 0.5) / cor_img.shape[0] - 0.5) * np.pi
# Convert to xyz space (z=-1)
cor_id_c = z / np.tan(cor_id_v)
cor_id_xy = np.stack([
cor_id_c * np.cos(cor_id_u),
cor_id_c * np.sin(cor_id_u),
], axis=0).T
# # Fix 2 diagonal corner, move the others
# cor_id_score = map_coordinates(cor_img, [cor_id[:, 1], cor_id[:, 0]])
# if cor_id_score[0::2].sum() > cor_id_score[1::2].sum():
# idx0, idx1 = 0, 1
# else:
# idx0, idx1 = 1, 0
# pc = cor_id_xy[idx0::2].mean(0, keepdims=True)
# radius2 = np.sqrt(((cor_id_xy[idx0::2] - pc) ** 2).sum(1)).mean()
# d = cor_id_xy[idx1::2] - pc
# d1 = d[0]
# d2 = d[1]
# theta1 = (np.arctan2(d1[1], d1[0]) + 2 * np.pi) % (2 * np.pi)
# theta2 = (np.arctan2(d2[1], d2[0]) + 2 * np.pi) % (2 * np.pi)
# theta2 = theta2 - np.pi
# theta2 = (theta2 + 2 * np.pi) % (2 * np.pi)
# theta = (theta1 + theta2) / 2
# d[0] = (radius2 * np.cos(theta), radius2 * np.sin(theta))
# theta = theta - np.pi
# d[1] = (radius2 * np.cos(theta), radius2 * np.sin(theta))
# cor_id_xy[idx1::2] = pc + d
# Convert refined xyz back to uv space
cor_id_uv = np.stack([
np.arctan2(cor_id_xy[:, 1], cor_id_xy[:, 0]),
np.arctan2(z, np.sqrt((cor_id_xy ** 2).sum(1))),
], axis=0).T
# Convert to image index
col = (cor_id_uv[:, 0] / (2 * np.pi) + 0.5) * cor_img.shape[1] - 0.5
row = (cor_id_uv[:, 1] / np.pi + 0.5) * cor_img.shape[0] - 0.5
return np.stack([col, row], axis=0).T, cor_id_xy
def fit_avg_z(cor_id, cor_id_xy, cor_img):
score = map_coordinates(cor_img, [cor_id[:, 1], cor_id[:, 0]])
c = np.sqrt((cor_id_xy ** 2).sum(1))
cor_id_v = ((cor_id[:, 1] + 0.5) / cor_img.shape[0] - 0.5) * np.pi
z = c * np.tan(cor_id_v)
fit_z = (z * score).sum() / score.sum()
return fit_z
def constraint_cor_id_on_xy(cor_id, cor_id_xy, cor_img):
c = np.sqrt((cor_id_xy ** 2).sum(1))
z = fit_avg_z(cor_id, cor_id_xy, cor_img)
# Convert to image index
col = cor_id[:, 0].copy()
row = (np.arctan2(z, c) / np.pi + 0.5) * cor_img.shape[0] - 0.5
return np.stack([col, row], axis=0).T
def get_ini_cor(cor_img, d1=21, d2=3):
cor = convolve(cor_img, np.ones((d1, d1)), mode='constant', cval=0.0)
cor_id = []
X_loc = find_N_peaks(cor.sum(0), prominence=None,
distance=20, N=4)[0]
for x in X_loc:
x_ = int(np.round(x))
V_signal = cor[:, max(0, x_-d2):x_+d2+1].sum(1)
y1, y2 = find_N_peaks(V_signal, prominence=None,
distance=20, N=2)[0]
cor_id.append((x, y1))
cor_id.append((x, y2))
cor_id = np.array(cor_id, np.float64)
return cor_id
def coords2uv(coords, width, height):
'''
Image coordinates (xy) to uv
'''
middleX = width / 2 + 0.5
middleY = height / 2 + 0.5
uv = np.hstack([
(coords[:, [0]] - middleX) / width * 2 * np.pi,
-(coords[:, [1]] - middleY) / height * np.pi])
return uv
def uv2xyzN(uv, planeID=1):
ID1 = (int(planeID) - 1 + 0) % 3
ID2 = (int(planeID) - 1 + 1) % 3
ID3 = (int(planeID) - 1 + 2) % 3
xyz = np.zeros((uv.shape[0], 3))
xyz[:, ID1] = np.cos(uv[:, 1]) * np.sin(uv[:, 0])
xyz[:, ID2] = np.cos(uv[:, 1]) * np.cos(uv[:, 0])
xyz[:, ID3] = np.sin(uv[:, 1])
return xyz
def uv2xyzN_vec(uv, planeID):
'''
vectorization version of uv2xyzN
@uv N x 2
@planeID N
'''
assert (planeID.astype(int) != planeID).sum() == 0
planeID = planeID.astype(int)
ID1 = (planeID - 1 + 0) % 3
ID2 = (planeID - 1 + 1) % 3
ID3 = (planeID - 1 + 2) % 3
ID = np.arange(len(uv))
xyz = np.zeros((len(uv), 3))
xyz[ID, ID1] = np.cos(uv[:, 1]) * np.sin(uv[:, 0])
xyz[ID, ID2] = np.cos(uv[:, 1]) * np.cos(uv[:, 0])
xyz[ID, ID3] = np.sin(uv[:, 1])
return xyz
def xyz2uvN(xyz, planeID=1):
ID1 = (int(planeID) - 1 + 0) % 3
ID2 = (int(planeID) - 1 + 1) % 3
ID3 = (int(planeID) - 1 + 2) % 3
normXY = np.sqrt(xyz[:, [ID1]] ** 2 + xyz[:, [ID2]] ** 2)
normXY[normXY < 0.000001] = 0.000001
normXYZ = np.sqrt(xyz[:, [ID1]] ** 2 + xyz[:, [ID2]] ** 2 + xyz[:, [ID3]] ** 2)
v = np.arcsin(xyz[:, [ID3]] / normXYZ)
u = np.arcsin(xyz[:, [ID1]] / normXY)
valid = (xyz[:, [ID2]] < 0) & (u >= 0)
u[valid] = np.pi - u[valid]
valid = (xyz[:, [ID2]] < 0) & (u <= 0)
u[valid] = -np.pi - u[valid]
uv = np.hstack([u, v])
uv[np.isnan(uv[:, 0]), 0] = 0
return uv
def computeUVN(n, in_, planeID):
'''
compute v given u and normal.
'''
if planeID == 2:
n = np.array([n[1], n[2], n[0]])
elif planeID == 3:
n = np.array([n[2], n[0], n[1]])
bc = n[0] * np.sin(in_) + n[1] * np.cos(in_)
bs = n[2]
out = np.arctan(-bc / (bs + 1e-9))
return out
def computeUVN_vec(n, in_, planeID):
'''
vectorization version of computeUVN
@n N x 3
@in_ MN x 1
@planeID N
'''
n = n.copy()
if (planeID == 2).sum():
n[planeID == 2] = np.roll(n[planeID == 2], 2, axis=1)
if (planeID == 3).sum():
n[planeID == 3] = np.roll(n[planeID == 3], 1, axis=1)
n = np.repeat(n, in_.shape[0] // n.shape[0], axis=0)
assert n.shape[0] == in_.shape[0]
bc = n[:, [0]] * np.sin(in_) + n[:, [1]] * np.cos(in_)
bs = n[:, [2]]
out = np.arctan(-bc / (bs + 1e-9))
return out
def lineFromTwoPoint(pt1, pt2):
'''
Generate line segment based on two points on panorama
pt1, pt2: two points on panorama
line:
1~3-th dim: normal of the line
4-th dim: the projection dimension ID
5~6-th dim: the u of line segment endpoints in projection plane
'''
numLine = pt1.shape[0]
lines = np.zeros((numLine, 6))
n = np.cross(pt1, pt2)
n = n / (matlib.repmat(np.sqrt(np.sum(n ** 2, 1, keepdims=1)), 1, 3) + 1e-9)
lines[:, 0:3] = n
areaXY = np.abs(np.sum(n * matlib.repmat([0, 0, 1], numLine, 1), 1, keepdims=True))
areaYZ = np.abs(np.sum(n * matlib.repmat([1, 0, 0], numLine, 1), 1, keepdims=True))
areaZX = np.abs(np.sum(n * matlib.repmat([0, 1, 0], numLine, 1), 1, keepdims=True))
planeIDs = np.argmax(np.hstack([areaXY, areaYZ, areaZX]), axis=1) + 1
lines[:, 3] = planeIDs
for i in range(numLine):
uv = xyz2uvN(np.vstack([pt1[i, :], pt2[i, :]]), lines[i, 3])
umax = uv[:, 0].max() + np.pi
umin = uv[:, 0].min() + np.pi
if umax - umin > np.pi:
lines[i, 4:6] = np.array([umax, umin]) / 2 / np.pi
else:
lines[i, 4:6] = np.array([umin, umax]) / 2 / np.pi
return lines
def lineIdxFromCors(cor_all, im_w, im_h):
assert len(cor_all) % 2 == 0
uv = coords2uv(cor_all, im_w, im_h)
xyz = uv2xyzN(uv)
lines = lineFromTwoPoint(xyz[0::2], xyz[1::2])
num_sample = max(im_h, im_w)
cs, rs = [], []
for i in range(lines.shape[0]):
n = lines[i, 0:3]
sid = lines[i, 4] * 2 * np.pi
eid = lines[i, 5] * 2 * np.pi
if eid < sid:
x = np.linspace(sid, eid + 2 * np.pi, num_sample)
x = x % (2 * np.pi)
else:
x = np.linspace(sid, eid, num_sample)
u = -np.pi + x.reshape(-1, 1)
v = computeUVN(n, u, lines[i, 3])
xyz = uv2xyzN(np.hstack([u, v]), lines[i, 3])
uv = xyz2uvN(xyz, 1)
r = np.minimum(np.floor((uv[:, 0] + np.pi) / (2 * np.pi) * im_w) + 1,
im_w).astype(np.int32)
c = np.minimum(np.floor((np.pi / 2 - uv[:, 1]) / np.pi * im_h) + 1,
im_h).astype(np.int32)
cs.extend(r - 1)
rs.extend(c - 1)
return rs, cs
def draw_boundary(cor_src, img_src=None, post_optimize=False, edg_src=None):
'''
@cor_src (numpy array H x W x 1, [0, 255])
model output corner probability map
@img_src (numpy array H x W x 3, [0, 255])
'''
assert not post_optimize or edg_src is not None
im_h, im_w = cor_src.shape
cor_id = get_ini_cor(cor_src)
if post_optimize:
assert len(edg_src.shape) == 3
assert edg_src.shape[:2] == cor_src.shape[:2]
assert edg_src.shape[2] == 3
cor_id = optimize_cor_id(cor_id, edg_src, cor_src)
cor_all = [cor_id]
for i in range(len(cor_id)):
cor_all.append(cor_id[i, :])
cor_all.append(cor_id[(i+2)%len(cor_id), :])
cor_all = np.vstack(cor_all)
rs, cs = lineIdxFromCors(cor_all, im_w, im_h)
if img_src is None:
panoEdgeC = np.zeros((im_h, im_w, 3), np.uint8)
else:
panoEdgeC = img_src.astype(np.uint8)
assert img_src.shape[0] == im_h and img_src.shape[1] == im_w
panoEdgeC[rs, cs, 1] = 255
return panoEdgeC
def draw_boundary_from_cor_id(cor_id, img_src):
im_h, im_w = img_src.shape[:2]
cor_all = [cor_id]
for i in range(len(cor_id)):
cor_all.append(cor_id[i, :])
cor_all.append(cor_id[(i+2)%len(cor_id), :])
cor_all = np.vstack(cor_all)
rs, cs = lineIdxFromCors(cor_all, im_w, im_h)
rs = np.array(rs)
cs = np.array(cs)
panoEdgeC = img_src.astype(np.uint8)
for dx, dy in [[-1, 0], [1, 0], [0, 0], [0, 1], [0, -1]]:
panoEdgeC[np.clip(rs+dx, 0, im_h-1), np.clip(cs+dy, 0, im_w-1), 1] = 255
return panoEdgeC
def coorx2u(x, w=1024):
return ((x + 0.5) / w - 0.5) * 2 * np.pi
def coory2v(y, h=512):
return ((y + 0.5) / h - 0.5) * np.pi
def u2coorx(u, w=1024):
return (u / (2 * np.pi) + 0.5) * w - 0.5
def v2coory(v, h=512):
return (v / np.pi + 0.5) * h - 0.5
def uv2xy(u, v, z=-50):
c = z / np.tan(v)
x = c * np.cos(u)
y = c * np.sin(u)
return x, y
def pano_connect_points(p1, p2, z=-50, w=1024, h=512):
u1 = coorx2u(p1[0], w)
v1 = coory2v(p1[1], h)
u2 = coorx2u(p2[0], w)
v2 = coory2v(p2[1], h)
x1, y1 = uv2xy(u1, v1, z)
x2, y2 = uv2xy(u2, v2, z)
if abs(p1[0] - p2[0]) < w / 2:
pstart = np.ceil(min(p1[0], p2[0]))
pend = np.floor(max(p1[0], p2[0]))
else:
pstart = np.ceil(max(p1[0], p2[0]))
pend = np.floor(min(p1[0], p2[0]) + w)
coorxs = (np.arange(pstart, pend + 1) % w).astype(np.float64)
vx = x2 - x1
vy = y2 - y1
us = coorx2u(coorxs, w)
ps = (np.tan(us) * x1 - y1) / (vy - np.tan(us) * vx)
cs = np.sqrt((x1 + ps * vx) ** 2 + (y1 + ps * vy) ** 2)
vs = np.arctan2(z, cs)
coorys = v2coory(vs)
return np.stack([coorxs, coorys], axis=-1)
if __name__ == '__main__':
import os
import argparse
from PIL import Image
parser = argparse.ArgumentParser()
parser.add_argument('--img_path')
parser.add_argument('--edg_path', required=True)
parser.add_argument('--cor_path', required=True)
parser.add_argument('--output_dir', required=True)
args = parser.parse_args()
if args.img_path:
img_src = np.array(Image.open(args.img_path), np.float64)
else:
img_src = None
edg_src = np.array(Image.open(args.edg_path), np.float64)
cor_src = np.array(Image.open(args.cor_path), np.float64)[..., 0]
panoEdgeC = draw_boundary(edg_src, cor_src, img_src)
basename = os.path.splitext(os.path.basename(args.img_path))[0]
Image.fromarray(panoEdgeC).save(
os.path.join(args.output_dir, '%sopt.png' % basename))