-
Notifications
You must be signed in to change notification settings - Fork 34
/
data_generator_matterport.py
209 lines (191 loc) · 7.64 KB
/
data_generator_matterport.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
from __future__ import print_function
from __future__ import division
import numpy as np
from torchvision import transforms
import time
import os
import pickle
from torch.utils import data
import scipy.io as sio
import scipy.ndimage
import cv2
import random
from skimage import exposure
import panostretch
from pano import draw_boundary_from_cor_id
from scipy.ndimage import gaussian_filter
# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
'train': transforms.Compose([
transforms.ToTensor(),
]),
'val': transforms.Compose([
transforms.ToTensor(),
]),
}
def cor2xybound(cor):
''' Helper function to clip max/min stretch factor '''
corU = cor[0::2]
corB = cor[1::2]
zU = -50
u = panostretch.coorx2u(corU[:, 0])
vU = panostretch.coory2v(corU[:, 1])
vB = panostretch.coory2v(corB[:, 1])
x, y = panostretch.uv2xy(u, vU, z=zU)
c = np.sqrt(x**2 + y**2)
zB = c * np.tan(vB)
xmin, xmax = x.min(), x.max()
ymin, ymax = y.min(), y.max()
S = 3 / abs(zB.mean() - zU)
dx = [abs(xmin * S), abs(xmax * S)]
dy = [abs(ymin * S), abs(ymax * S)]
return min(dx), min(dy), max(dx), max(dy)
# Data generator
class ShapeNetDataset(data.Dataset):
def __init__(self, file_list, root_dir, train_type, transform=None):
print(root_dir)
self.namelist = []
with open(file_list, 'r') as f:
while(True):
line = f.readline().strip()
if not line:
break
self.namelist.append(line)
self.root_dir = root_dir
self.transform = transform
self.train_type = train_type
self.max_stretch = 2.0
self.im_w = 1024
self.im_h = 512
def __len__(self):
return len(self.namelist)
def __getitem__(self, idx):
file_list_sub = self.namelist[idx].split(" ")
pkl_path = os.path.join(self.root_dir,file_list_sub[0],file_list_sub[1])
img = cv2.imread(os.path.join(pkl_path,'aligned_rgb.png'))
img = img.astype('float32')/255.0
mask = cv2.imread(os.path.join(pkl_path,'aligned_line.png'))
mask = mask.astype('float32')/255.0
cor = np.loadtxt(os.path.join(pkl_path,'cor.txt'))
# data augmentation
if self.train_type == 'train':
# random streching
xmin, ymin, xmax, ymax = cor2xybound(cor)
kx = np.random.uniform(1.0, self.max_stretch)
ky = np.random.uniform(1.0, self.max_stretch)
if np.random.randint(2) == 0:
kx = max(1 / kx, min(0.5 / xmin, 1.0))
else:
kx = min(kx, max(10.0 / xmax, 1.0))
if np.random.randint(2) == 0:
ky = max(1 / ky, min(0.5 / ymin, 1.0))
else:
ky = min(ky, max(10.0 / ymax, 1.0))
img, mask, cor = panostretch.pano_stretch(img, mask, cor, kx, ky)
# random rotation
random.seed()
h = img.shape[0]
w = img.shape[1]
rot = int(np.floor(np.random.random()*w))
img = np.concatenate((img[:,rot:,:],img[:,:rot,:]), axis=1)
mask = np.concatenate((mask[:,rot:,:],mask[:,:rot,:]), axis=1)
cor[:,0] = cor[:,0] - rot
id = cor[:,0]<0
cor[id,0] = cor[id,0]+1023
# generate line label
# wall
kpmap_w = np.zeros((self.im_h, self.im_w))
bg = np.zeros_like(img)
for l_id in range(0,cor.shape[0],2):
panoEdgeC = draw_boundary_from_cor_id(cor[l_id:l_id+2,:],bg)
# add gaussian
panoEdgeC = panoEdgeC.astype('float32')/255.0
panoEdgeC = gaussian_filter(panoEdgeC[:,:,1], sigma=20)
panoEdgeC = panoEdgeC/np.max(panoEdgeC)
kpmap_w = np.maximum(kpmap_w, panoEdgeC)
# ceil
kpmap_c = np.zeros((self.im_h, self.im_w))
cor_all = cor.copy()
for l_id in range(0,cor.shape[0]-2,2):
cor_all[l_id+1,:] = cor_all[l_id+2,:]
cor_all[cor.shape[0]-1,:] = cor_all[0,:]
for l_id in range(0,cor_all.shape[0],2):
panoEdgeC = draw_boundary_from_cor_id(cor_all[l_id:l_id+2,:],bg)
# add gaussian
panoEdgeC = panoEdgeC[:,:,1].astype('float32')/255.0
panoEdgeC[int(np.amax(cor_all[l_id:l_id+2,1]))+5:,:] = 0
panoEdgeC = gaussian_filter(panoEdgeC, sigma=20)
panoEdgeC = panoEdgeC/np.max(panoEdgeC)
kpmap_c = np.maximum(kpmap_c, panoEdgeC)
# floor
kpmap_f = np.zeros((self.im_h, self.im_w))
cor_all = cor.copy()
cor_all = np.concatenate((cor_all[1:,:], np.expand_dims(cor_all[0,:], axis=0)), axis=0)
for l_id in range(1, cor.shape[0]-2,2):
cor_all[l_id,:] = cor_all[l_id+1,:]
cor_all[cor.shape[0]-1,:] = cor_all[0,:]
for l_id in range(0,cor_all.shape[0],2):
panoEdgeC = draw_boundary_from_cor_id(cor_all[l_id:l_id+2,:],bg)
# add gaussian
panoEdgeC = panoEdgeC[:,:,1].astype('float32')/255.0
panoEdgeC[:int(np.amin(cor_all[l_id:l_id+2,1]))-5,:] = 0
panoEdgeC = gaussian_filter(panoEdgeC, sigma=20)
panoEdgeC = panoEdgeC/np.max(panoEdgeC)
kpmap_f = np.maximum(kpmap_f, panoEdgeC)
label = np.stack((kpmap_w, kpmap_c, kpmap_f), axis=-1)
# generate corner label
label2 = np.zeros((self.im_h, self.im_w))
for l_id in range(cor.shape[0]):
panoEdgeC = np.zeros((self.im_h, self.im_w))
hh = int(np.round(cor[l_id,1]))
ww = int(np.round(cor[l_id,0]))
panoEdgeC[hh-1:hh+2, ww]=1.0
panoEdgeC[hh, ww-1:ww+2]=1.0
# add gaussian
panoEdgeC = gaussian_filter(panoEdgeC, sigma=20)
panoEdgeC = panoEdgeC/np.max(panoEdgeC)
label2 = np.maximum(label2, panoEdgeC)
label2 = np.expand_dims(label2, axis=2)
if self.train_type == 'train':
# gamma
random.seed()
g_prob = np.random.random()*1+0.5
img = exposure.adjust_gamma(img, g_prob)
# intensity
random.seed()
g_prob = np.random.random()*127
img = exposure.rescale_intensity(img*255.0, in_range=(g_prob, 255))
# color channel
random.seed()
g_prob = np.random.random()*0.4+0.8
img[:,:,0] = img[:,:,0]*g_prob
random.seed()
g_prob = np.random.random()*0.4+0.8
img[:,:,1] = img[:,:,1]*g_prob
random.seed()
g_prob = np.random.random()*0.4+0.8
img[:,:,2] = img[:,:,2]*g_prob
# random flip
if random.uniform(0, 1) > 0.5:
img = np.fliplr(img).copy()
mask = np.fliplr(mask).copy()
label = np.fliplr(label).copy()
label2 = np.fliplr(label2).copy()
# reshape
np.clip(img, 0.0, 1.0 , out=img)
np.clip(label, 0.0, 1.0 , out=label)
np.clip(label2, 0.0, 1.0 , out=label2)
np.clip(mask, 0.0, 1.0 , out=mask)
img = np.concatenate((img, mask), axis=2)
# permute dim
if self.transform:
if self.train_type == 'train':
img = data_transforms['train'](img).float()
label = data_transforms['train'](label).float()
label2 = data_transforms['train'](label2).float()
else:
img = data_transforms['val'](img).float()
label = data_transforms['val'](label).float()
label2 = data_transforms['val'](label2).float()
return img, label, label2