|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "cdedc3a0", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# 90 and 180 degrees rotations" |
| 9 | + ] |
| 10 | + }, |
| 11 | + { |
| 12 | + "cell_type": "code", |
| 13 | + "execution_count": 1, |
| 14 | + "id": "64dcf84e", |
| 15 | + "metadata": {}, |
| 16 | + "outputs": [], |
| 17 | + "source": [ |
| 18 | + "from RotationMatrix import *\n", |
| 19 | + "import sys\n", |
| 20 | + "sys.path.append(\"..\")\n", |
| 21 | + "from sigma.GraphData import *\n", |
| 22 | + "from sigma.model import *\n", |
| 23 | + "import pandas as pd\n", |
| 24 | + "import random\n", |
| 25 | + "from pandas import Series,DataFrame\n", |
| 26 | + "import numpy as np\n", |
| 27 | + "import math\n", |
| 28 | + "import copy\n", |
| 29 | + "from tqdm import tqdm\n", |
| 30 | + "import statistics" |
| 31 | + ] |
| 32 | + }, |
| 33 | + { |
| 34 | + "cell_type": "code", |
| 35 | + "execution_count": 2, |
| 36 | + "id": "c1e1129f", |
| 37 | + "metadata": {}, |
| 38 | + "outputs": [], |
| 39 | + "source": [ |
| 40 | + "ifile = '../data/TestData.csv'\n", |
| 41 | + "ParameterPath = '../parameter/parameter.pkl'\n", |
| 42 | + "mfileh5 = '../model/model_new.h5'" |
| 43 | + ] |
| 44 | + }, |
| 45 | + { |
| 46 | + "cell_type": "markdown", |
| 47 | + "id": "abffdfa3", |
| 48 | + "metadata": {}, |
| 49 | + "source": [ |
| 50 | + "## Performance on the test set with initial position" |
| 51 | + ] |
| 52 | + }, |
| 53 | + { |
| 54 | + "cell_type": "code", |
| 55 | + "execution_count": 3, |
| 56 | + "id": "d62bc948", |
| 57 | + "metadata": {}, |
| 58 | + "outputs": [ |
| 59 | + { |
| 60 | + "name": "stdout", |
| 61 | + "output_type": "stream", |
| 62 | + "text": [ |
| 63 | + "The generation of 3d conformers: 100%|█████████████████▉| 558/559 [02:19<00:00, 3.99it/s]\n" |
| 64 | + ] |
| 65 | + }, |
| 66 | + { |
| 67 | + "name": "stderr", |
| 68 | + "output_type": "stream", |
| 69 | + "text": [ |
| 70 | + "..\\sigma\\GraphData.py:187: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.\n", |
| 71 | + " features = np.asarray(features)\n", |
| 72 | + "..\\sigma\\GraphData.py:188: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.\n", |
| 73 | + " edge_features = np.asarray(edge_features)\n" |
| 74 | + ] |
| 75 | + }, |
| 76 | + { |
| 77 | + "name": "stdout", |
| 78 | + "output_type": "stream", |
| 79 | + "text": [ |
| 80 | + "Predictions: 100%|█████████████████████████████████████▉| 558/559 [00:07<00:00, 75.44it/s]\n", |
| 81 | + "The number of molecules in the test set : 559 \n", |
| 82 | + "\n", |
| 83 | + "R2 Score : 0.9937075292150549 \n", |
| 84 | + "\n", |
| 85 | + "Median Relative Error : 1.2091052412873495 %\n" |
| 86 | + ] |
| 87 | + } |
| 88 | + ], |
| 89 | + "source": [ |
| 90 | + "smiles, adduct, ccs = read_data(ifile)\n", |
| 91 | + "param = parameter.Parameter()\n", |
| 92 | + "with open(ParameterPath,'rb') as file:\n", |
| 93 | + " param = pickle.loads(file.read()) \n", |
| 94 | + "smiles, adduct, ccs, Coordinate = Generating_coordinates(smiles, adduct, ccs, param.All_Atoms) #559\n", |
| 95 | + "\n", |
| 96 | + "CoordinateStd = copy.deepcopy(Coordinate)\n", |
| 97 | + "for z in range(len(CoordinateStd)):\n", |
| 98 | + " CoordinateStd[z] = (np.array(CoordinateStd[z]) - param.Min_Coor) / (param.Max_Coor - param.Min_Coor)\n", |
| 99 | + " \n", |
| 100 | + "adj, features, edge_features = convertToGraph(smiles, CoordinateStd, param.All_Atoms)\n", |
| 101 | + "DataSet = MyDataset(features, adj, edge_features, ccs)\n", |
| 102 | + "\n", |
| 103 | + "ECC_Model = load_Model_from_file(mfileh5)\n", |
| 104 | + "\n", |
| 105 | + "re = predict(ECC_Model,param.adduct_SET,DataSet,adduct,)\n", |
| 106 | + "print(\"The number of molecules in the test set :\", len(re), '\\n')\n", |
| 107 | + "\n", |
| 108 | + "Sigma = re\n", |
| 109 | + "CCS = ccs\n", |
| 110 | + "SigmaPer = R2_MRE(CCS, Sigma)" |
| 111 | + ] |
| 112 | + }, |
| 113 | + { |
| 114 | + "cell_type": "markdown", |
| 115 | + "id": "5fe0a744", |
| 116 | + "metadata": {}, |
| 117 | + "source": [ |
| 118 | + "## Performance on the test set with 90 degree rotation" |
| 119 | + ] |
| 120 | + }, |
| 121 | + { |
| 122 | + "cell_type": "code", |
| 123 | + "execution_count": 4, |
| 124 | + "id": "852caa4a", |
| 125 | + "metadata": {}, |
| 126 | + "outputs": [ |
| 127 | + { |
| 128 | + "name": "stderr", |
| 129 | + "output_type": "stream", |
| 130 | + "text": [ |
| 131 | + "..\\sigma\\GraphData.py:187: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.\n", |
| 132 | + " features = np.asarray(features)\n", |
| 133 | + "..\\sigma\\GraphData.py:188: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.\n", |
| 134 | + " edge_features = np.asarray(edge_features)\n" |
| 135 | + ] |
| 136 | + }, |
| 137 | + { |
| 138 | + "name": "stdout", |
| 139 | + "output_type": "stream", |
| 140 | + "text": [ |
| 141 | + "Predictions: 100%|█████████████████████████████████████▉| 558/559 [00:07<00:00, 75.13it/s]\n", |
| 142 | + "R2 Score : 0.9936971125028244 \n", |
| 143 | + "\n", |
| 144 | + "Median Relative Error : 1.1653698978192344 %\n" |
| 145 | + ] |
| 146 | + } |
| 147 | + ], |
| 148 | + "source": [ |
| 149 | + "CoordinateRotate = copy.deepcopy(Coordinate)\n", |
| 150 | + "for k in range(len(CoordinateRotate)):\n", |
| 151 | + " thetax = 0.25* math.pi\n", |
| 152 | + " thetay = 0.25* math.pi\n", |
| 153 | + " thetaz = 0.25* math.pi\n", |
| 154 | + " for ii in range(len(CoordinateRotate[k])):\n", |
| 155 | + " CoordinateRotate[k][ii] = CoordinateRotate[k][ii] @Rx(thetax) @Ry(thetay) @Rz(thetaz)\n", |
| 156 | + "for i in range(len(CoordinateRotate)):\n", |
| 157 | + " CoordinateRotate[i] = (np.array(CoordinateRotate[i]) - param.Min_Coor) / (param.Max_Coor - param.Min_Coor)\n", |
| 158 | + "\n", |
| 159 | + "adj, features, edge_features = convertToGraph(smiles, CoordinateRotate, param.All_Atoms)\n", |
| 160 | + "DataSet = MyDataset(features, adj, edge_features, ccs)\n", |
| 161 | + "\n", |
| 162 | + "ECC_Model = load_Model_from_file(mfileh5)\n", |
| 163 | + "\n", |
| 164 | + "re = predict(ECC_Model,param.adduct_SET,DataSet,adduct,)\n", |
| 165 | + "\n", |
| 166 | + "Sigma = re\n", |
| 167 | + "CCS = ccs\n", |
| 168 | + "SigmaPer = R2_MRE(CCS, Sigma)" |
| 169 | + ] |
| 170 | + }, |
| 171 | + { |
| 172 | + "cell_type": "markdown", |
| 173 | + "id": "8a30e39c", |
| 174 | + "metadata": {}, |
| 175 | + "source": [ |
| 176 | + "## Performance on the test set with 180 degree rotation" |
| 177 | + ] |
| 178 | + }, |
| 179 | + { |
| 180 | + "cell_type": "code", |
| 181 | + "execution_count": 5, |
| 182 | + "id": "ef24f01e", |
| 183 | + "metadata": {}, |
| 184 | + "outputs": [ |
| 185 | + { |
| 186 | + "name": "stderr", |
| 187 | + "output_type": "stream", |
| 188 | + "text": [ |
| 189 | + "..\\sigma\\GraphData.py:187: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.\n", |
| 190 | + " features = np.asarray(features)\n", |
| 191 | + "..\\sigma\\GraphData.py:188: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.\n", |
| 192 | + " edge_features = np.asarray(edge_features)\n" |
| 193 | + ] |
| 194 | + }, |
| 195 | + { |
| 196 | + "name": "stdout", |
| 197 | + "output_type": "stream", |
| 198 | + "text": [ |
| 199 | + "Predictions: 100%|█████████████████████████████████████▉| 558/559 [00:07<00:00, 75.23it/s]\n", |
| 200 | + "R2 Score : 0.9935965379786625 \n", |
| 201 | + "\n", |
| 202 | + "Median Relative Error : 1.2743489126141125 %\n" |
| 203 | + ] |
| 204 | + } |
| 205 | + ], |
| 206 | + "source": [ |
| 207 | + "CoordinateRotate = copy.deepcopy(Coordinate)\n", |
| 208 | + "for k in range(len(CoordinateRotate)):\n", |
| 209 | + " thetax = 0.5*math.pi\n", |
| 210 | + " thetay = 0.5*math.pi\n", |
| 211 | + " thetaz = 0.5*math.pi\n", |
| 212 | + " for ii in range(len(CoordinateRotate[k])):\n", |
| 213 | + " CoordinateRotate[k][ii] = CoordinateRotate[k][ii] @Rx(thetax) @Ry(thetay) @Rz(thetaz)\n", |
| 214 | + "for i in range(len(CoordinateRotate)):\n", |
| 215 | + " CoordinateRotate[i] = (np.array(CoordinateRotate[i]) - param.Min_Coor) / (param.Max_Coor - param.Min_Coor)\n", |
| 216 | + "\n", |
| 217 | + "adj, features, edge_features = convertToGraph(smiles, CoordinateRotate, param.All_Atoms)\n", |
| 218 | + "DataSet = MyDataset(features, adj, edge_features, ccs)\n", |
| 219 | + "\n", |
| 220 | + "ECC_Model = load_Model_from_file(mfileh5)\n", |
| 221 | + "\n", |
| 222 | + "re = predict(ECC_Model,param.adduct_SET,DataSet,adduct,)\n", |
| 223 | + "\n", |
| 224 | + "Sigma = re\n", |
| 225 | + "CCS = ccs\n", |
| 226 | + "SigmaPer = R2_MRE(CCS, Sigma)" |
| 227 | + ] |
| 228 | + } |
| 229 | + ], |
| 230 | + "metadata": { |
| 231 | + "kernelspec": { |
| 232 | + "display_name": "Python 3 (ipykernel)", |
| 233 | + "language": "python", |
| 234 | + "name": "python3" |
| 235 | + }, |
| 236 | + "language_info": { |
| 237 | + "codemirror_mode": { |
| 238 | + "name": "ipython", |
| 239 | + "version": 3 |
| 240 | + }, |
| 241 | + "file_extension": ".py", |
| 242 | + "mimetype": "text/x-python", |
| 243 | + "name": "python", |
| 244 | + "nbconvert_exporter": "python", |
| 245 | + "pygments_lexer": "ipython3", |
| 246 | + "version": "3.7.7" |
| 247 | + } |
| 248 | + }, |
| 249 | + "nbformat": 4, |
| 250 | + "nbformat_minor": 5 |
| 251 | +} |
0 commit comments