forked from chronolaw/annotated_nginx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ngx_process.c
771 lines (612 loc) · 21.6 KB
/
ngx_process.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
// annotated by chrono since 2016
//
// * ngx_spawn_process
// * ngx_signal_handler
/*
* Copyright (C) Igor Sysoev
* Copyright (C) Nginx, Inc.
*/
#include <ngx_config.h>
#include <ngx_core.h>
#include <ngx_event.h>
#include <ngx_channel.h>
// 标记unix信号,handler=ngx_signal_handler
typedef struct {
int signo;
char *signame;
char *name;
// 原接口:void (*handler)(int signo);
// 1.13.0 变动了函数接口
// 可以多获取一些信号的信息
void (*handler)(int signo, siginfo_t *siginfo, void *ucontext);
} ngx_signal_t;
static void ngx_execute_proc(ngx_cycle_t *cycle, void *data);
// 1.13.0 变动了函数接口
// 原接口:static void ngx_signal_handler(int signo);
//
// 处理unix信号
// 收到信号后设置ngx_quit/ngx_sigalrm/ngx_reconfigue等全局变量
// 由进程里的无限循环检查这些变量再处理
// 检查子进程结束,设置进程数组ngx_processes里的状态
static void ngx_signal_handler(int signo, siginfo_t *siginfo, void *ucontext);
// 检查子进程结束,设置进程数组ngx_processes里的状态
static void ngx_process_get_status(void);
// 解除子进程相关的共享内存锁
static void ngx_unlock_mutexes(ngx_pid_t pid);
// 在core/nginx.c ngx_save_argv()里存储命令行参数
int ngx_argc;
char **ngx_argv;
char **ngx_os_argv;
// 全局变量,用于传出创建的进程索引号
// 用在ngx_start_worker_processes()里
ngx_int_t ngx_process_slot;
// 进程间通信的channel
ngx_socket_t ngx_channel;
// 产生进程的计数器,初始值为0
// 标记数组ngx_processes的最后使用的位置,遍历用
ngx_int_t ngx_last_process;
// 创建的进程都在ngx_processes数组里
// 此数组仅在master进程里使用,worker进程不使用
ngx_process_t ngx_processes[NGX_MAX_PROCESSES];
// 命令行-s参数关联数组
// 所有信号都用ngx_signal_handler处理
ngx_signal_t signals[] = {
// #define NGX_RECONFIGURE_SIGNAL HUP
// 即sighup
{ ngx_signal_value(NGX_RECONFIGURE_SIGNAL),
"SIG" ngx_value(NGX_RECONFIGURE_SIGNAL),
"reload",
ngx_signal_handler },
// #define NGX_REOPEN_SIGNAL USR1
// 即sigusr1
{ ngx_signal_value(NGX_REOPEN_SIGNAL),
"SIG" ngx_value(NGX_REOPEN_SIGNAL),
"reopen",
ngx_signal_handler },
{ ngx_signal_value(NGX_NOACCEPT_SIGNAL),
"SIG" ngx_value(NGX_NOACCEPT_SIGNAL),
"",
ngx_signal_handler },
// #define NGX_TERMINATE_SIGNAL TERM
// sigterm
{ ngx_signal_value(NGX_TERMINATE_SIGNAL),
"SIG" ngx_value(NGX_TERMINATE_SIGNAL),
"stop",
ngx_signal_handler },
// #define NGX_SHUTDOWN_SIGNAL QUIT
// sigquit
{ ngx_signal_value(NGX_SHUTDOWN_SIGNAL),
"SIG" ngx_value(NGX_SHUTDOWN_SIGNAL),
"quit",
ngx_signal_handler },
{ ngx_signal_value(NGX_CHANGEBIN_SIGNAL),
"SIG" ngx_value(NGX_CHANGEBIN_SIGNAL),
"",
ngx_signal_handler },
{ SIGALRM, "SIGALRM", "", ngx_signal_handler },
{ SIGINT, "SIGINT", "", ngx_signal_handler },
{ SIGIO, "SIGIO", "", ngx_signal_handler },
{ SIGCHLD, "SIGCHLD", "", ngx_signal_handler },
{ SIGSYS, "SIGSYS, SIG_IGN", "", NULL },
{ SIGPIPE, "SIGPIPE, SIG_IGN", "", NULL },
{ 0, NULL, "", NULL }
};
// 被ngx_start_worker_processes()调用,产生worker进程
// 参数proc = ngx_worker_process_cycle
// data = (void *) (intptr_t) i,即worker id
// name = "worker process"
// respawn = NGX_PROCESS_RESPAWN 即-3
// #define NGX_PROCESS_JUST_SPAWN -2
ngx_pid_t
ngx_spawn_process(ngx_cycle_t *cycle, ngx_spawn_proc_pt proc, void *data,
char *name, ngx_int_t respawn)
{
u_long on;
ngx_pid_t pid;
ngx_int_t s;
// 决定进程在ngx_processes数组里的位置
// 产生新进程时respawn < 0
if (respawn >= 0) {
s = respawn;
} else {
// 遍历进程数组,找到第一个“空”的位置,也就是pid无效的
for (s = 0; s < ngx_last_process; s++) {
if (ngx_processes[s].pid == -1) {
break;
}
}
// 序号不能超过nginx的最大值,即1024
if (s == NGX_MAX_PROCESSES) {
ngx_log_error(NGX_LOG_ALERT, cycle->log, 0,
"no more than %d processes can be spawned",
NGX_MAX_PROCESSES);
return NGX_INVALID_PID;
}
}
// 创建进程间通信用的channel
if (respawn != NGX_PROCESS_DETACHED) {
/* Solaris 9 still has no AF_LOCAL */
// 创建socketpair,进程间通信用
if (socketpair(AF_UNIX, SOCK_STREAM, 0, ngx_processes[s].channel) == -1)
{
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
"socketpair() failed while spawning \"%s\"", name);
return NGX_INVALID_PID;
}
ngx_log_debug2(NGX_LOG_DEBUG_CORE, cycle->log, 0,
"channel %d:%d",
ngx_processes[s].channel[0],
ngx_processes[s].channel[1]);
// 进程间通信非阻塞
if (ngx_nonblocking(ngx_processes[s].channel[0]) == -1) {
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
ngx_nonblocking_n " failed while spawning \"%s\"",
name);
ngx_close_channel(ngx_processes[s].channel, cycle->log);
return NGX_INVALID_PID;
}
if (ngx_nonblocking(ngx_processes[s].channel[1]) == -1) {
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
ngx_nonblocking_n " failed while spawning \"%s\"",
name);
ngx_close_channel(ngx_processes[s].channel, cycle->log);
return NGX_INVALID_PID;
}
on = 1;
if (ioctl(ngx_processes[s].channel[0], FIOASYNC, &on) == -1) {
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
"ioctl(FIOASYNC) failed while spawning \"%s\"", name);
ngx_close_channel(ngx_processes[s].channel, cycle->log);
return NGX_INVALID_PID;
}
if (fcntl(ngx_processes[s].channel[0], F_SETOWN, ngx_pid) == -1) {
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
"fcntl(F_SETOWN) failed while spawning \"%s\"", name);
ngx_close_channel(ngx_processes[s].channel, cycle->log);
return NGX_INVALID_PID;
}
if (fcntl(ngx_processes[s].channel[0], F_SETFD, FD_CLOEXEC) == -1) {
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
"fcntl(FD_CLOEXEC) failed while spawning \"%s\"",
name);
ngx_close_channel(ngx_processes[s].channel, cycle->log);
return NGX_INVALID_PID;
}
if (fcntl(ngx_processes[s].channel[1], F_SETFD, FD_CLOEXEC) == -1) {
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
"fcntl(FD_CLOEXEC) failed while spawning \"%s\"",
name);
ngx_close_channel(ngx_processes[s].channel, cycle->log);
return NGX_INVALID_PID;
}
ngx_channel = ngx_processes[s].channel[1];
} else {
ngx_processes[s].channel[0] = -1;
ngx_processes[s].channel[1] = -1;
}
// 设置全局变量,当前进程在数组ngx_processes里的位置
ngx_process_slot = s;
// 调用fork产生子进程
pid = fork();
switch (pid) {
// -1产生子进程出错
case -1:
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
"fork() failed while spawning \"%s\"", name);
ngx_close_channel(ngx_processes[s].channel, cycle->log);
return NGX_INVALID_PID;
// 0是子进程,开始执行worker进程的核心函数
// ngx_worker_process_cycle,即无限循环处理事件
case 0:
// 1.14.0,获取父进程pid,即masterpid
ngx_parent = ngx_pid;
// worker进程重新获取进程id
ngx_pid = ngx_getpid();
// 这里是子进程的真正工作,无限循环
// proc = ngx_worker_process_cycle
// data = (void *) (intptr_t) i,即worker id
proc(cycle, data);
break;
// 父进程得到子进程的pid
default:
break;
}
ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "start %s %P", name, pid);
// 把子进程的pid存入数组,记录状态
ngx_processes[s].pid = pid;
ngx_processes[s].exited = 0;
if (respawn >= 0) {
return pid;
}
// 填充worker进程的其他状态
// name = "worker process"
ngx_processes[s].proc = proc;
ngx_processes[s].data = data;
ngx_processes[s].name = name;
ngx_processes[s].exiting = 0;
switch (respawn) {
case NGX_PROCESS_NORESPAWN:
ngx_processes[s].respawn = 0;
ngx_processes[s].just_spawn = 0;
ngx_processes[s].detached = 0;
break;
case NGX_PROCESS_JUST_SPAWN:
ngx_processes[s].respawn = 0;
ngx_processes[s].just_spawn = 1;
ngx_processes[s].detached = 0;
break;
case NGX_PROCESS_RESPAWN:
ngx_processes[s].respawn = 1;
ngx_processes[s].just_spawn = 0;
ngx_processes[s].detached = 0;
break;
case NGX_PROCESS_JUST_RESPAWN:
ngx_processes[s].respawn = 1;
ngx_processes[s].just_spawn = 1;
ngx_processes[s].detached = 0;
break;
case NGX_PROCESS_DETACHED:
ngx_processes[s].respawn = 0;
ngx_processes[s].just_spawn = 0;
ngx_processes[s].detached = 1;
break;
}
// ngx_last_process增加,用于之后产生新进程用
if (s == ngx_last_process) {
ngx_last_process++;
}
return pid;
}
// 执行外部程序
ngx_pid_t
ngx_execute(ngx_cycle_t *cycle, ngx_exec_ctx_t *ctx)
{
// 产生进程执行ngx_execute_proc
return ngx_spawn_process(cycle, ngx_execute_proc, ctx, ctx->name,
NGX_PROCESS_DETACHED);
}
static void
ngx_execute_proc(ngx_cycle_t *cycle, void *data)
{
ngx_exec_ctx_t *ctx = data;
// 系统调用execve()
if (execve(ctx->path, ctx->argv, ctx->envp) == -1) {
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
"execve() failed while executing %s \"%s\"",
ctx->name, ctx->path);
}
exit(1);
}
// 初始化signals数组
ngx_int_t
ngx_init_signals(ngx_log_t *log)
{
ngx_signal_t *sig;
struct sigaction sa;
for (sig = signals; sig->signo != 0; sig++) {
ngx_memzero(&sa, sizeof(struct sigaction));
if (sig->handler) {
sa.sa_sigaction = sig->handler;
sa.sa_flags = SA_SIGINFO;
} else {
sa.sa_handler = SIG_IGN;
}
sigemptyset(&sa.sa_mask);
if (sigaction(sig->signo, &sa, NULL) == -1) {
#if (NGX_VALGRIND)
ngx_log_error(NGX_LOG_ALERT, log, ngx_errno,
"sigaction(%s) failed, ignored", sig->signame);
#else
ngx_log_error(NGX_LOG_EMERG, log, ngx_errno,
"sigaction(%s) failed", sig->signame);
return NGX_ERROR;
#endif
}
}
return NGX_OK;
}
// 1.13.0 变动了函数接口
// static void ngx_signal_handler(int signo, siginfo_t *siginfo, void *ucontext);
//
// 处理unix信号
// 收到信号后设置ngx_quit/ngx_sigalrm/ngx_reconfigue等全局变量
// 由进程里的无限循环检查这些变量再处理
// 检查子进程结束,设置进程数组ngx_processes里的状态
static void
ngx_signal_handler(int signo, siginfo_t *siginfo, void *ucontext)
{
char *action;
ngx_int_t ignore;
ngx_err_t err;
ngx_signal_t *sig;
ignore = 0;
err = ngx_errno;
// 遍历信号数组,因为数量少,所以不太影响效率
for (sig = signals; sig->signo != 0; sig++) {
if (sig->signo == signo) {
break;
}
}
ngx_time_sigsafe_update();
action = "";
switch (ngx_process) {
// master/single进程可以处理的信号
case NGX_PROCESS_MASTER:
case NGX_PROCESS_SINGLE:
switch (signo) {
// 优雅关闭, -s quit
case ngx_signal_value(NGX_SHUTDOWN_SIGNAL):
ngx_quit = 1;
action = ", shutting down";
break;
// 直接关闭, -s stop
case ngx_signal_value(NGX_TERMINATE_SIGNAL):
case SIGINT:
ngx_terminate = 1;
action = ", exiting";
break;
case ngx_signal_value(NGX_NOACCEPT_SIGNAL):
if (ngx_daemonized) {
ngx_noaccept = 1;
action = ", stop accepting connections";
}
break;
// 重新加载配置文件, -s reload
case ngx_signal_value(NGX_RECONFIGURE_SIGNAL):
ngx_reconfigure = 1;
action = ", reconfiguring";
break;
// 重新打开文件, -s reopen
case ngx_signal_value(NGX_REOPEN_SIGNAL):
ngx_reopen = 1;
action = ", reopening logs";
break;
case ngx_signal_value(NGX_CHANGEBIN_SIGNAL):
if (ngx_getppid() == ngx_parent || ngx_new_binary > 0) {
/*
* Ignore the signal in the new binary if its parent is
* not changed, i.e. the old binary's process is still
* running. Or ignore the signal in the old binary's
* process if the new binary's process is already running.
*/
action = ", ignoring";
ignore = 1;
break;
}
ngx_change_binary = 1;
action = ", changing binary";
break;
// SIGALRM,更新时间
case SIGALRM:
ngx_sigalrm = 1;
break;
case SIGIO:
ngx_sigio = 1;
break;
// 子进程结束,可能发生了意外
case SIGCHLD:
// 将导致master进程ngx_master_process_cycle()调用ngx_reap_children()
// 重新产生子进程
ngx_reap = 1;
break;
}
break;
// worker能够处理的信号较少
case NGX_PROCESS_WORKER:
case NGX_PROCESS_HELPER:
switch (signo) {
case ngx_signal_value(NGX_NOACCEPT_SIGNAL):
if (!ngx_daemonized) {
break;
}
ngx_debug_quit = 1;
/* fall through */
// 优雅关闭, -s quit
case ngx_signal_value(NGX_SHUTDOWN_SIGNAL):
ngx_quit = 1;
action = ", shutting down";
break;
// 直接关闭, -s stop
case ngx_signal_value(NGX_TERMINATE_SIGNAL):
case SIGINT:
ngx_terminate = 1;
action = ", exiting";
break;
// 重新打开文件, -s reopen
case ngx_signal_value(NGX_REOPEN_SIGNAL):
ngx_reopen = 1;
action = ", reopening logs";
break;
// 重新加载配置文件, -s reload
case ngx_signal_value(NGX_RECONFIGURE_SIGNAL):
case ngx_signal_value(NGX_CHANGEBIN_SIGNAL):
case SIGIO:
action = ", ignoring";
break;
}
break;
}
if (siginfo && siginfo->si_pid) {
ngx_log_error(NGX_LOG_NOTICE, ngx_cycle->log, 0,
"signal %d (%s) received from %P%s",
signo, sig->signame, siginfo->si_pid, action);
} else {
ngx_log_error(NGX_LOG_NOTICE, ngx_cycle->log, 0,
"signal %d (%s) received%s",
signo, sig->signame, action);
}
if (ignore) {
ngx_log_error(NGX_LOG_CRIT, ngx_cycle->log, 0,
"the changing binary signal is ignored: "
"you should shutdown or terminate "
"before either old or new binary's process");
}
// 父进程收到了子进程结束的信号
if (signo == SIGCHLD) {
ngx_process_get_status();
}
ngx_set_errno(err);
}
// 检查子进程结束,设置进程数组ngx_processes里的状态
static void
ngx_process_get_status(void)
{
int status;
char *process;
ngx_pid_t pid;
ngx_err_t err;
ngx_int_t i;
ngx_uint_t one;
one = 0;
for ( ;; ) {
// 系统调用,获得结束的子进程
// WNOHANG 若pid指定的子进程没有结束,则waitpid()函数返回0,不予以等待。
// 若结束,则返回该子进程的ID。
pid = waitpid(-1, &status, WNOHANG);
if (pid == 0) {
return;
}
if (pid == -1) {
err = ngx_errno;
if (err == NGX_EINTR) {
continue;
}
if (err == NGX_ECHILD && one) {
return;
}
/*
* Solaris always calls the signal handler for each exited process
* despite waitpid() may be already called for this process.
*
* When several processes exit at the same time FreeBSD may
* erroneously call the signal handler for exited process
* despite waitpid() may be already called for this process.
*/
if (err == NGX_ECHILD) {
ngx_log_error(NGX_LOG_INFO, ngx_cycle->log, err,
"waitpid() failed");
return;
}
ngx_log_error(NGX_LOG_ALERT, ngx_cycle->log, err,
"waitpid() failed");
return;
}
one = 1;
process = "unknown process";
// 在进程数组里找到结束的进程
for (i = 0; i < ngx_last_process; i++) {
if (ngx_processes[i].pid == pid) {
// 设置结束进程的结束状态
ngx_processes[i].status = status;
ngx_processes[i].exited = 1;
process = ngx_processes[i].name;
break;
}
}
// WTERMSIG宏测试被执行后,若成功返回被终止的子进程的信号值。
// 只记录log,无其他动作
if (WTERMSIG(status)) {
#ifdef WCOREDUMP
ngx_log_error(NGX_LOG_ALERT, ngx_cycle->log, 0,
"%s %P exited on signal %d%s",
process, pid, WTERMSIG(status),
WCOREDUMP(status) ? " (core dumped)" : "");
#else
ngx_log_error(NGX_LOG_ALERT, ngx_cycle->log, 0,
"%s %P exited on signal %d",
process, pid, WTERMSIG(status));
#endif
} else {
ngx_log_error(NGX_LOG_NOTICE, ngx_cycle->log, 0,
"%s %P exited with code %d",
process, pid, WEXITSTATUS(status));
}
// 获取子进程的非正常返回值
if (WEXITSTATUS(status) == 2 && ngx_processes[i].respawn) {
ngx_log_error(NGX_LOG_ALERT, ngx_cycle->log, 0,
"%s %P exited with fatal code %d "
"and cannot be respawned",
process, pid, WEXITSTATUS(status));
ngx_processes[i].respawn = 0;
}
// 解除子进程相关的共享内存锁
ngx_unlock_mutexes(pid);
}
}
// 解除子进程相关的共享内存锁
static void
ngx_unlock_mutexes(ngx_pid_t pid)
{
ngx_uint_t i;
ngx_shm_zone_t *shm_zone;
ngx_list_part_t *part;
ngx_slab_pool_t *sp;
/*
* unlock the accept mutex if the abnormally exited process
* held it
*/
// accept锁
if (ngx_accept_mutex_ptr) {
(void) ngx_shmtx_force_unlock(&ngx_accept_mutex, pid);
}
/*
* unlock shared memory mutexes if held by the abnormally exited
* process
*/
// 共享内存里的锁
part = (ngx_list_part_t *) &ngx_cycle->shared_memory.part;
shm_zone = part->elts;
for (i = 0; /* void */ ; i++) {
if (i >= part->nelts) {
if (part->next == NULL) {
break;
}
part = part->next;
shm_zone = part->elts;
i = 0;
}
sp = (ngx_slab_pool_t *) shm_zone[i].shm.addr;
if (ngx_shmtx_force_unlock(&sp->mutex, pid)) {
ngx_log_error(NGX_LOG_ALERT, ngx_cycle->log, 0,
"shared memory zone \"%V\" was locked by %P",
&shm_zone[i].shm.name, pid);
}
}
}
// debug断点时的动作,停止或是直接core
void
ngx_debug_point(void)
{
ngx_core_conf_t *ccf;
// 取核心配置
ccf = (ngx_core_conf_t *) ngx_get_conf(ngx_cycle->conf_ctx,
ngx_core_module);
switch (ccf->debug_points) {
// stop,使用stop信号停止运行
case NGX_DEBUG_POINTS_STOP:
raise(SIGSTOP);
break;
// 直接abort
case NGX_DEBUG_POINTS_ABORT:
ngx_abort();
}
}
// 被ngx_cycle.c里的ngx_signal_process()调用
// 发送reload/stop等信号
ngx_int_t
ngx_os_signal_process(ngx_cycle_t *cycle, char *name, ngx_pid_t pid)
{
ngx_signal_t *sig;
// 字符串比较,找到对应的信号,调用kill发送
// signals是本文件前面定义的一个数组
for (sig = signals; sig->signo != 0; sig++) {
if (ngx_strcmp(name, sig->name) == 0) {
if (kill(pid, sig->signo) != -1) {
return 0;
}
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
"kill(%P, %d) failed", pid, sig->signo);
}
}
return 1;
}