Skip to content

This is the source code for the paper "LogoStyleFool: Vitiating Video Recognition Systems via Logo Style Transfer" (AAAI 2024).

License

Notifications You must be signed in to change notification settings

ziyuzhao-zzy/LogoStyleFool

Repository files navigation

LogoStyleFool

This is the source code for our paper "LogoStyleFool: Vitiating Video Recognition Systems via Logo Style Transfer" (AAAI 2024).

Requirements

  • python == 3.6
  • pytorch == 1.10.0
  • kornia == 0.2.2
  • torchvision == 0.11.3
  • easydict
  • opencv
  • scikit-learn
  • tqdm
  • scipy

Dataset

Please download the action recognition dataset UCF-101 and HMDB51, then process and save them in 'data/'. We use the same preprocessing as StyleFool.

Pretrained model

The pre-trained model for C3D on UCF-101, as well as models for style transfer, is provided here.

Usage

LogoStyleFool

Targeted attack

Run python main.py --model C3D --dataset UCF101 --video_npy_path ./your/path/BenchPress/v_BenchPress_g20_c06.npy --label 9 --target --target_class 55 --output_path result/.

Untargeted attack

Run python main.py --model C3D --dataset UCF101 --video_npy_path ./your/path/FrontCrawl/v_FrontCrawl_g09_c03.npy --label 31 --output_path result/.

Basic arguments:

  • --model: The attacked model.
  • --dataset: The dataset.
  • --gpu: ID of the GPU to use.
  • --video_npy_path: The video path in npy forms.
  • --label: The label of the video.
  • --target: Targeted attack or untargeted attack (default).
  • --target_class: Targeted attack class.
  • --output_path: The path to save output_adversarial_npy_path.
  • --rl_batch: The batch size of RL.
  • --steps: The steps of RL.
  • --sigma: The RL reward ratio to control area.
  • --tau: The RL reward ratio to control distance.
  • --logo_num: The num of logos.
  • --style_num: The num of style imgs.
  • --max_iters: The max iters of LogoS-DCT.
  • --epsilon: The epsilon of LogoS-DCT.
  • --linf_bound: The linf bound of perturbation.(0 ~ 1 for LogoStyleFool-$l_2$ and 0 for LogoStyleFool-$l_\infty$)

Acknowledgement

Citation

If you use this code or its parts in your research, please cite the following paper:

@inproceedings{cao2024logostylefool,
      title={LogoStyleFool: Vitiating Video Recognition Systems via Logo Style Transfer}, 
      author={Cao, Yuxin and Zhao, Ziyu and Xiao, Xi and Wang, Derui and Xue, Minhui and Lu, Jin},
      booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
      year={2024},
      address={Vancouver, Canada},
      month={February}
}

About

This is the source code for the paper "LogoStyleFool: Vitiating Video Recognition Systems via Logo Style Transfer" (AAAI 2024).

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published