We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
https://github.com/bethgelab/game-of-noise 一种使神经网络对各种图像损坏具有鲁棒性的简单方法 该存储库包含论文的训练模型权重、训练和评估代码 一种使神经网络对各种图像损坏具有鲁棒性的简单方法,作者:Evgenia Rusak*、Lukas Schott*、Roland Zimmermann*、Julian Bitterwolf、Oliver Bringmann、Matthias Bethge & Wieland Brendel。
我们表明,一种非常简单的方法 - 高斯噪声的数据增强 - 足以超越最先进的方法,以提高对常见腐败的鲁棒性。更进一步,我们学习每像素分布,以使用一个简单的生成神经网络(我们称之为噪声发生器)从对抗性中采样噪声。联合训练噪声发生器和分类器进一步提高了鲁棒性。
The text was updated successfully, but these errors were encountered:
No branches or pull requests
https://github.com/bethgelab/game-of-noise
一种使神经网络对各种图像损坏具有鲁棒性的简单方法
该存储库包含论文的训练模型权重、训练和评估代码 一种使神经网络对各种图像损坏具有鲁棒性的简单方法,作者:Evgenia Rusak*、Lukas Schott*、Roland Zimmermann*、Julian Bitterwolf、Oliver Bringmann、Matthias Bethge & Wieland Brendel。
我们表明,一种非常简单的方法 - 高斯噪声的数据增强 - 足以超越最先进的方法,以提高对常见腐败的鲁棒性。更进一步,我们学习每像素分布,以使用一个简单的生成神经网络(我们称之为噪声发生器)从对抗性中采样噪声。联合训练噪声发生器和分类器进一步提高了鲁棒性。
The text was updated successfully, but these errors were encountered: