机器学习网站导航以及资源,欢迎PR,访问网站:https://www.mlhub123.com/
- Google News: Google News Machine learning
- MIT News: Machine learning | MIT News
- 机器之心: 机器之心 | 全球人工智能信息服务
- 雷锋网: 雷锋网 | 读懂智能,未来
- 知乎主题: 知乎机器学习热门主题
- 数据分析网: 数据分析网 - 大数据学习交流第一平台
- 17bigdata: 专注数据分析、挖掘、大数据相关领域的技术分享、交流
- DataTau: 人工智能领域的Hacker News
- PaperWeekly: 一个推荐、解读、讨论和报道人工智能前沿论文成果的学术平台
- Reddit: Reddit | 机器学习板块
- Quora: Quora | 机器学习主题
- AIQ: 机器学习大数据技术社区
- 极智能: 人工智能技术社区
- ShortScience: 用最简单的篇幅去概况科学著作
- MathOverflow: 数学知识问答社区
- Machine Learning Mastery: 帮助开发人员使用机器学习的知识解决复杂的问题
- Stats and Bots - Medium: 机器学习应用程序和代码的实用指南
- tornadomeet的博客: 很详细的ML&DL学习博客
- 爱可可-爱生活: 知名互联网资讯博主
- 超智能体: 分享最通俗易懂的深度学习教程
- 人工智能笔记: 人工智能从入门到AI统治世界
- SCI-HUB: 找论文必备
- 猫咪论文: 简单自由的论文下载平台
- arXiv: 康奈尔大学运营的学术预印本发布的平台
- GitXiv: arXiv的成果开源实现平台
- Arxiv Sanity: 论文查询推荐
- Papers with Code: 将论文与开源代码实现结合
- Kaggle: 为数据科学家提供举办机器学习竞赛
- KDD-CUP: 国际知识发现和数据挖掘竞赛
- 天池大数据: 大数据竞赛、大数据解决方案、数据科学家社区、人工智能、机器学习
- DataCastle: 中国领先的数据科学竞赛平台
- 赛氪网: 汇集以高校竞赛为主,活动、社区为辅的大学生竞赛活动平台
- DataFountain: DF,CCF指定专业大数据竞赛平台
- 滴滴新锐: 滴滴面向全球高校博士、硕士、优秀本科生的精英人才计划
- 机器学习速成课程: Google制作的节奏紧凑、内容实用的机器学习简介课程
- 吴恩达: 机器学习课程
- 吴恩达: 深度学习课程
- 林轩田: 机器学习基石
- 林轩田: 机器学习技法
- liuyubobobo: Python3 入门机器学习
- fast.ai: Making neural nets uncool again
- 3Blue1Brown: YouTube | 数学基础频道
- Two Minute Papers: YouTube | 最简短的语言概况最新的热点论文
- Coursera-ML-AndrewNg-Notes: 吴恩达老师的机器学习课程个人笔记
- deeplearning_ai_books: 吴恩达老师的深度学习课程笔记及资源
- awesome-machine-learning-cn: 机器学习资源大全中文版,包括机器学习领域的框架、库以及软件
- 周志华 - 机器学习: 周志华《机器学习》笔记
- ml_tutorials: 机器学习相关教程
- Machine Learning、Deep Learning: ML&DL资料
- MachineLearning_Python: 机器学习算法python实现
- deeplearningbook-chinese: 深度学习中文版
- Neural Networks and Deep Learning: 深度学习开源书籍
- Neural Networks and Deep Learning: 深度学习开源书籍 - 中文
- hands_on_Ml_with_Sklearn_and_TF: Sklearn与TensorFlow机器学习实用指南
- 机器学习实战: Machine Learning in Action(机器学习实战)
- TensorFlow: TF官方文档
- PyTorch: PyTorch官方文档
- Caffe: 一个基于表达式,速度和模块化原则创建的深度学习框架
- Keras: Keras官方文档
- Neon: Nervana公司一个基于Python的深度学习库
- Chainer: 基于Python的独立的深度学习模型开源框架
- scikit-learn: scikit-learn官方文档
- PyBrain: 一个模块化的Python机器学习库
- Statsmodels: 用来探索数据,估计统计模型,进行统计测试
- Theano: 允许高效地定义、优化以及评估涉及多维数组的数学表达式
- Pylearn2: 构建于Theano之上的机器学习库
- Gensim: 包含可扩展的统计语义,分析纯文本文档的语义结构,以及检索相似语义的文档等功能
- NumPy: NumPy官方文档
- pandas: pandas官方文档
- Matplotlib: Matplotlib官方文档