forked from bmaltais/kohya_ss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdreambooth_folder_creation_gui.py
308 lines (276 loc) · 12.1 KB
/
dreambooth_folder_creation_gui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import gradio as gr
from .common_gui import get_folder_path, scriptdir, list_dirs, create_refresh_button
import shutil
import os
from .class_gui_config import KohyaSSGUIConfig
from .custom_logging import setup_logging
# Set up logging
log = setup_logging()
def copy_info_to_Folders_tab(training_folder):
img_folder = gr.Dropdown(value=os.path.join(training_folder, "img"))
if os.path.exists(os.path.join(training_folder, "reg")):
reg_folder = gr.Dropdown(value=os.path.join(training_folder, "reg"))
else:
reg_folder = gr.Dropdown(value="")
model_folder = gr.Dropdown(value=os.path.join(training_folder, "model"))
log_folder = gr.Dropdown(value=os.path.join(training_folder, "log"))
return img_folder, reg_folder, model_folder, log_folder
def dreambooth_folder_preparation(
util_training_images_dir_input,
util_training_images_repeat_input,
util_instance_prompt_input,
util_regularization_images_dir_input,
util_regularization_images_repeat_input,
util_class_prompt_input,
util_training_dir_output,
):
# Check if the input variables are empty
if not len(util_training_dir_output):
log.info(
"Destination training directory is missing... can't perform the required task..."
)
return
else:
# Create the util_training_dir_output directory if it doesn't exist
os.makedirs(util_training_dir_output, exist_ok=True)
# Check for instance prompt
if util_instance_prompt_input == "":
log.error("Instance prompt missing...")
return
# Check for class prompt
if util_class_prompt_input == "":
log.error("Class prompt missing...")
return
# Create the training_dir path
if util_training_images_dir_input == "":
log.info(
"Training images directory is missing... can't perform the required task..."
)
return
else:
training_dir = os.path.join(
util_training_dir_output,
f"img/{int(util_training_images_repeat_input)}_{util_instance_prompt_input} {util_class_prompt_input}",
)
# Remove folders if they exist
if os.path.exists(training_dir):
log.info(f"Removing existing directory {training_dir}...")
shutil.rmtree(training_dir)
# Copy the training images to their respective directories
log.info(f"Copy {util_training_images_dir_input} to {training_dir}...")
shutil.copytree(util_training_images_dir_input, training_dir)
if not util_regularization_images_dir_input == "":
# Create the regularization_dir path
if not util_regularization_images_repeat_input > 0:
log.info("Repeats is missing... not copying regularisation images...")
else:
regularization_dir = os.path.join(
util_training_dir_output,
f"reg/{int(util_regularization_images_repeat_input)}_{util_class_prompt_input}",
)
# Remove folders if they exist
if os.path.exists(regularization_dir):
log.info(f"Removing existing directory {regularization_dir}...")
shutil.rmtree(regularization_dir)
# Copy the regularisation images to their respective directories
log.info(
f"Copy {util_regularization_images_dir_input} to {regularization_dir}..."
)
shutil.copytree(util_regularization_images_dir_input, regularization_dir)
else:
log.info(
"Regularization images directory is missing... not copying regularisation images..."
)
# create log and model folder
# Check if the log folder exists and create it if it doesn't
if not os.path.exists(os.path.join(util_training_dir_output, "log")):
os.makedirs(os.path.join(util_training_dir_output, "log"))
# Check if the model folder exists and create it if it doesn't
if not os.path.exists(os.path.join(util_training_dir_output, "model")):
os.makedirs(os.path.join(util_training_dir_output, "model"))
log.info(
f"Done creating kohya_ss training folder structure at {util_training_dir_output}..."
)
def gradio_dreambooth_folder_creation_tab(
config: KohyaSSGUIConfig,
train_data_dir_input=gr.Dropdown(),
reg_data_dir_input=gr.Dropdown(),
output_dir_input=gr.Dropdown(),
logging_dir_input=gr.Dropdown(),
headless=False,
):
current_train_data_dir = os.path.join(scriptdir, "data")
current_reg_data_dir = os.path.join(scriptdir, "data")
current_train_output_dir = os.path.join(scriptdir, "data")
with gr.Tab("Dreambooth/LoRA Folder preparation"):
gr.Markdown(
"This utility will create the necessary folder structure for the training images and optional regularization images needed for the kohys_ss Dreambooth/LoRA method to function correctly."
)
with gr.Row():
util_instance_prompt_input = gr.Textbox(
label="Instance prompt",
placeholder="Eg: asd",
interactive=True,
value=config.get(key="dataset_preparation.instance_prompt", default=""),
)
util_class_prompt_input = gr.Textbox(
label="Class prompt",
placeholder="Eg: person",
interactive=True,
value=config.get(key="dataset_preparation.class_prompt", default=""),
)
with gr.Group(), gr.Row():
def list_train_data_dirs(path):
nonlocal current_train_data_dir
current_train_data_dir = path
return list(list_dirs(path))
util_training_images_dir_input = gr.Dropdown(
label="Training images (directory containing the training images)",
interactive=True,
choices=[
config.get(key="dataset_preparation.images_folder", default="")
]
+ list_train_data_dirs(current_train_data_dir),
value=config.get(key="dataset_preparation.images_folder", default=""),
allow_custom_value=True,
)
create_refresh_button(
util_training_images_dir_input,
lambda: None,
lambda: {"choices": list_train_data_dirs(current_train_data_dir)},
"open_folder_small",
)
button_util_training_images_dir_input = gr.Button(
"📂",
elem_id="open_folder_small",
elem_classes=["tool"],
visible=(not headless),
)
button_util_training_images_dir_input.click(
get_folder_path,
outputs=util_training_images_dir_input,
show_progress=False,
)
util_training_images_repeat_input = gr.Number(
label="Repeats",
value=config.get(key="dataset_preparation.util_training_images_repeat_input", default=40),
interactive=True,
elem_id="number_input",
)
util_training_images_dir_input.change(
fn=lambda path: gr.Dropdown(choices=[config.get(key="dataset_preparation.images_folder", default="")] + list_train_data_dirs(path)),
inputs=util_training_images_dir_input,
outputs=util_training_images_dir_input,
show_progress=False,
)
with gr.Group(), gr.Row():
def list_reg_data_dirs(path):
nonlocal current_reg_data_dir
current_reg_data_dir = path
return list(list_dirs(path))
util_regularization_images_dir_input = gr.Dropdown(
label="Regularisation images (Optional. directory containing the regularisation images)",
interactive=True,
choices=[
config.get(key="dataset_preparation.reg_images_folder", default="")
]
+ list_reg_data_dirs(current_reg_data_dir),
value=config.get(
key="dataset_preparation.reg_images_folder", default=""
),
allow_custom_value=True,
)
create_refresh_button(
util_regularization_images_dir_input,
lambda: None,
lambda: {"choices": list_reg_data_dirs(current_reg_data_dir)},
"open_folder_small",
)
button_util_regularization_images_dir_input = gr.Button(
"📂",
elem_id="open_folder_small",
elem_classes=["tool"],
visible=(not headless),
)
button_util_regularization_images_dir_input.click(
get_folder_path,
outputs=util_regularization_images_dir_input,
show_progress=False,
)
util_regularization_images_repeat_input = gr.Number(
label="Repeats",
value=config.get(
key="dataset_preparation.util_regularization_images_repeat_input",
default=1
),
interactive=True,
elem_id="number_input",
)
util_regularization_images_dir_input.change(
fn=lambda path: gr.Dropdown(choices=[""] + list_reg_data_dirs(path)),
inputs=util_regularization_images_dir_input,
outputs=util_regularization_images_dir_input,
show_progress=False,
)
with gr.Group(), gr.Row():
def list_train_output_dirs(path):
nonlocal current_train_output_dir
current_train_output_dir = path
return list(list_dirs(path))
util_training_dir_output = gr.Dropdown(
label="Destination training directory (where formatted training and regularisation folders will be placed)",
interactive=True,
choices=[config.get(key="train_data_dir", default="")]
+ list_train_output_dirs(current_train_output_dir),
value=config.get(key="train_data_dir", default=""),
allow_custom_value=True,
)
create_refresh_button(
util_training_dir_output,
lambda: None,
lambda: {"choices": list_train_output_dirs(current_train_output_dir)},
"open_folder_small",
)
button_util_training_dir_output = gr.Button(
"📂",
elem_id="open_folder_small",
elem_classes=["tool"],
visible=(not headless),
)
button_util_training_dir_output.click(
get_folder_path, outputs=util_training_dir_output
)
util_training_dir_output.change(
fn=lambda path: gr.Dropdown(
choices=[config.get(key="train_data_dir", default="")] + list_train_output_dirs(path)
),
inputs=util_training_dir_output,
outputs=util_training_dir_output,
show_progress=False,
)
button_prepare_training_data = gr.Button("Prepare training data")
button_prepare_training_data.click(
dreambooth_folder_preparation,
inputs=[
util_training_images_dir_input,
util_training_images_repeat_input,
util_instance_prompt_input,
util_regularization_images_dir_input,
util_regularization_images_repeat_input,
util_class_prompt_input,
util_training_dir_output,
],
show_progress=False,
)
button_copy_info_to_Folders_tab = gr.Button('Copy info to respective fields')
button_copy_info_to_Folders_tab.click(
copy_info_to_Folders_tab,
inputs=[util_training_dir_output],
outputs=[
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
logging_dir_input,
],
show_progress=False,
)