forked from bmaltais/kohya_ss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclass_advanced_training.py
577 lines (549 loc) · 24.5 KB
/
class_advanced_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
import gradio as gr
from typing import Tuple
from .common_gui import (
get_folder_path,
get_any_file_path,
list_files,
list_dirs,
create_refresh_button,
document_symbol,
)
class AdvancedTraining:
"""
This class configures and initializes the advanced training settings for a machine learning model,
including options for headless operation, fine-tuning, training type selection, and default directory paths.
Attributes:
headless (bool): If True, run without the Gradio interface.
finetuning (bool): If True, enables fine-tuning of the model.
training_type (str): Specifies the type of training to perform.
no_token_padding (gr.Checkbox): Checkbox to disable token padding.
gradient_accumulation_steps (gr.Slider): Slider to set the number of gradient accumulation steps.
weighted_captions (gr.Checkbox): Checkbox to enable weighted captions.
"""
def __init__(
self,
headless: bool = False,
finetuning: bool = False,
training_type: str = "",
config: dict = {},
) -> None:
"""
Initializes the AdvancedTraining class with given settings.
Parameters:
headless (bool): Run in headless mode without GUI.
finetuning (bool): Enable model fine-tuning.
training_type (str): The type of training to be performed.
config (dict): Configuration options for the training process.
"""
self.headless = headless
self.finetuning = finetuning
self.training_type = training_type
self.config = config
# Determine the current directories for VAE and output, falling back to defaults if not specified.
self.current_vae_dir = self.config.get("advanced.vae_dir", "./models/vae")
self.current_state_dir = self.config.get("advanced.state_dir", "./outputs")
self.current_log_tracker_config_dir = self.config.get(
"advanced.log_tracker_config_dir", "./logs"
)
# Define the behavior for changing noise offset type.
def noise_offset_type_change(
noise_offset_type: str,
) -> Tuple[gr.Group, gr.Group]:
"""
Returns a tuple of Gradio Groups with visibility set based on the noise offset type.
Parameters:
noise_offset_type (str): The selected noise offset type.
Returns:
Tuple[gr.Group, gr.Group]: A tuple containing two Gradio Group elements with their visibility set.
"""
if noise_offset_type == "Original":
return (gr.Group(visible=True), gr.Group(visible=False))
else:
return (gr.Group(visible=False), gr.Group(visible=True))
# GUI elements are only visible when not fine-tuning.
with gr.Row(visible=not finetuning):
# Exclude token padding option for LoRA training type.
if training_type != "lora":
self.no_token_padding = gr.Checkbox(
label="No token padding",
value=self.config.get("advanced.no_token_padding", False),
)
self.gradient_accumulation_steps = gr.Slider(
label="Gradient accumulate steps",
info="Number of updates steps to accumulate before performing a backward/update pass",
value=self.config.get("advanced.gradient_accumulation_steps", 1),
minimum=1,
maximum=120,
step=1,
)
self.weighted_captions = gr.Checkbox(
label="Weighted captions",
value=self.config.get("advanced.weighted_captions", False),
)
with gr.Group(), gr.Row(visible=not finetuning):
self.prior_loss_weight = gr.Number(
label="Prior loss weight",
value=self.config.get("advanced.prior_loss_weight", 1.0),
)
def list_vae_files(path):
self.current_vae_dir = path if not path == "" else "."
return list(list_files(path, exts=[".ckpt", ".safetensors"], all=True))
self.vae = gr.Dropdown(
label="VAE (Optional: Path to checkpoint of vae for training)",
interactive=True,
choices=[self.config.get("advanced.vae_dir", "")]
+ list_vae_files(self.current_vae_dir),
value=self.config.get("advanced.vae_dir", ""),
allow_custom_value=True,
)
create_refresh_button(
self.vae,
lambda: None,
lambda: {
"choices": [self.config.get("advanced.vae_dir", "")]
+ list_vae_files(self.current_vae_dir)
},
"open_folder_small",
)
self.vae_button = gr.Button(
"📂", elem_id="open_folder_small", visible=(not headless)
)
self.vae_button.click(
get_any_file_path,
outputs=self.vae,
show_progress=False,
)
self.vae.change(
fn=lambda path: gr.Dropdown(
choices=[self.config.get("advanced.vae_dir", "")]
+ list_vae_files(path)
),
inputs=self.vae,
outputs=self.vae,
show_progress=False,
)
with gr.Row():
self.additional_parameters = gr.Textbox(
label="Additional parameters",
placeholder='(Optional) Use to provide additional parameters not handled by the GUI. Eg: --some_parameters "value"',
value=self.config.get("advanced.additional_parameters", ""),
)
with gr.Accordion("Scheduled Huber Loss", open=False):
with gr.Row():
self.loss_type = gr.Dropdown(
label="Loss type",
choices=["huber", "smooth_l1", "l2"],
value=self.config.get("advanced.loss_type", "l2"),
info="The type of loss to use and whether it's scheduled based on the timestep",
)
self.huber_schedule = gr.Dropdown(
label="Huber schedule",
choices=[
"constant",
"exponential",
"snr",
],
value=self.config.get("advanced.huber_schedule", "snr"),
info="The type of loss to use and whether it's scheduled based on the timestep",
)
self.huber_c = gr.Number(
label="Huber C",
value=self.config.get("advanced.huber_c", 0.1),
minimum=0.0,
maximum=1.0,
step=0.01,
info="The huber loss parameter. Only used if one of the huber loss modes (huber or smooth l1) is selected with loss_type",
)
with gr.Row():
self.save_every_n_steps = gr.Number(
label="Save every N steps",
value=self.config.get("advanced.save_every_n_steps", 0),
precision=0,
info="(Optional) The model is saved every specified steps",
)
self.save_last_n_steps = gr.Number(
label="Save last N steps",
value=self.config.get("advanced.save_last_n_steps", 0),
precision=0,
info="(Optional) Save only the specified number of models (old models will be deleted)",
)
self.save_last_n_steps_state = gr.Number(
label="Save last N steps state",
value=self.config.get("advanced.save_last_n_steps_state", 0),
precision=0,
info="(Optional) Save only the specified number of states (old models will be deleted)",
)
with gr.Row():
def full_options_update(full_fp16, full_bf16):
full_fp16_active = True
full_bf16_active = True
if full_fp16:
full_bf16_active = False
if full_bf16:
full_fp16_active = False
return gr.Checkbox(
interactive=full_fp16_active,
), gr.Checkbox(interactive=full_bf16_active)
self.keep_tokens = gr.Slider(
label="Keep n tokens",
value=self.config.get("advanced.keep_tokens", 0),
minimum=0,
maximum=32,
step=1,
)
self.clip_skip = gr.Slider(
label="Clip skip",
value=self.config.get("advanced.clip_skip", 1),
minimum=0,
maximum=12,
step=1,
)
self.max_token_length = gr.Dropdown(
label="Max Token Length",
choices=[
75,
150,
225,
],
info="max token length of text encoder",
value=self.config.get("advanced.max_token_length", 75),
)
with gr.Row():
if training_type == "lora":
self.fp8_base = gr.Checkbox(
label="fp8 base training (experimental)",
info="U-Net and Text Encoder can be trained with fp8 (experimental)",
value=self.config.get("advanced.fp8_base", False),
)
self.full_fp16 = gr.Checkbox(
label="Full fp16 training (experimental)",
value=self.config.get("advanced.full_fp16", False),
)
self.full_bf16 = gr.Checkbox(
label="Full bf16 training (experimental)",
value=self.config.get("advanced.full_bf16", False),
info="Required bitsandbytes >= 0.36.0",
)
self.full_fp16.change(
full_options_update,
inputs=[self.full_fp16, self.full_bf16],
outputs=[self.full_fp16, self.full_bf16],
)
self.full_bf16.change(
full_options_update,
inputs=[self.full_fp16, self.full_bf16],
outputs=[self.full_fp16, self.full_bf16],
)
with gr.Row():
self.gradient_checkpointing = gr.Checkbox(
label="Gradient checkpointing",
value=self.config.get("advanced.gradient_checkpointing", False),
)
self.shuffle_caption = gr.Checkbox(
label="Shuffle caption",
value=self.config.get("advanced.shuffle_caption", False),
)
self.persistent_data_loader_workers = gr.Checkbox(
label="Persistent data loader",
value=self.config.get("advanced.persistent_data_loader_workers", False),
)
self.mem_eff_attn = gr.Checkbox(
label="Memory efficient attention",
value=self.config.get("advanced.mem_eff_attn", False),
)
with gr.Row():
self.xformers = gr.Dropdown(
label="CrossAttention",
choices=["none", "sdpa", "xformers"],
value=self.config.get("advanced.xformers", "xformers"),
)
self.color_aug = gr.Checkbox(
label="Color augmentation",
value=self.config.get("advanced.color_aug", False),
info="Enable weak color augmentation",
)
self.flip_aug = gr.Checkbox(
label="Flip augmentation",
value=getattr(self.config, "advanced.flip_aug", False),
info="Enable horizontal flip augmentation",
)
self.masked_loss = gr.Checkbox(
label="Masked loss",
value=self.config.get("advanced.masked_loss", False),
info="Apply mask for calculating loss. conditioning_data_dir is required for dataset",
)
with gr.Row():
self.scale_v_pred_loss_like_noise_pred = gr.Checkbox(
label="Scale v prediction loss",
value=self.config.get(
"advanced.scale_v_pred_loss_like_noise_pred", False
),
info="Only for SD v2 models. By scaling the loss according to the time step, the weights of global noise prediction and local noise prediction become the same, and the improvement of details may be expected.",
)
self.min_snr_gamma = gr.Slider(
label="Min SNR gamma",
value=self.config.get("advanced.min_snr_gamma", 0),
minimum=0,
maximum=20,
step=1,
info="Recommended value of 5 when used",
)
self.debiased_estimation_loss = gr.Checkbox(
label="Debiased Estimation loss",
value=self.config.get("advanced.debiased_estimation_loss", False),
info="Automates the processing of noise, allowing for faster model fitting, as well as balancing out color issues. Do not use if Min SNR gamma is specified.",
)
with gr.Row():
# self.sdpa = gr.Checkbox(label='Use sdpa', value=False, info='Use sdpa for CrossAttention')
self.bucket_no_upscale = gr.Checkbox(
label="Don't upscale bucket resolution",
value=self.config.get("advanced.bucket_no_upscale", True),
)
self.bucket_reso_steps = gr.Slider(
label="Bucket resolution steps",
value=self.config.get("advanced.bucket_reso_steps", 64),
minimum=1,
maximum=128,
)
self.random_crop = gr.Checkbox(
label="Random crop instead of center crop",
value=self.config.get("advanced.random_crop", False),
)
self.v_pred_like_loss = gr.Slider(
label="V Pred like loss",
value=self.config.get("advanced.v_pred_like_loss", 0),
minimum=0,
maximum=1,
step=0.01,
info="Recommended value of 0.5 when used",
)
with gr.Row():
self.min_timestep = gr.Slider(
label="Min Timestep",
value=self.config.get("advanced.min_timestep", 0),
step=1,
minimum=0,
maximum=1000,
info="Values greater than 0 will make the model more img2img focussed. 0 = image only",
)
self.max_timestep = gr.Slider(
label="Max Timestep",
value=self.config.get("advanced.max_timestep", 1000),
step=1,
minimum=0,
maximum=1000,
info="Values lower than 1000 will make the model more img2img focussed. 1000 = noise only",
)
with gr.Row():
self.noise_offset_type = gr.Dropdown(
label="Noise offset type",
choices=[
"Original",
"Multires",
],
value=self.config.get("advanced.noise_offset_type", "Original"),
scale=1,
)
with gr.Row(visible=True) as self.noise_offset_original:
self.noise_offset = gr.Slider(
label="Noise offset",
value=self.config.get("advanced.noise_offset", 0),
minimum=0,
maximum=1,
step=0.01,
info="Recommended values are 0.05 - 0.15",
)
self.noise_offset_random_strength = gr.Checkbox(
label="Noise offset random strength",
value=self.config.get(
"advanced.noise_offset_random_strength", False
),
info="Use random strength between 0~noise_offset for noise offset",
)
self.adaptive_noise_scale = gr.Slider(
label="Adaptive noise scale",
value=self.config.get("advanced.adaptive_noise_scale", 0),
minimum=-1,
maximum=1,
step=0.001,
info="Add `latent mean absolute value * this value` to noise_offset",
)
with gr.Row(visible=False) as self.noise_offset_multires:
self.multires_noise_iterations = gr.Slider(
label="Multires noise iterations",
value=self.config.get("advanced.multires_noise_iterations", 0),
minimum=0,
maximum=64,
step=1,
info="Enable multires noise (recommended values are 6-10)",
)
self.multires_noise_discount = gr.Slider(
label="Multires noise discount",
value=self.config.get("advanced.multires_noise_discount", 0.3),
minimum=0,
maximum=1,
step=0.01,
info="Recommended values are 0.8. For LoRAs with small datasets, 0.1-0.3",
)
with gr.Row(visible=True):
self.ip_noise_gamma = gr.Slider(
label="IP noise gamma",
value=self.config.get("advanced.ip_noise_gamma", 0),
minimum=0,
maximum=1,
step=0.01,
info="enable input perturbation noise. used for regularization. recommended value: around 0.1",
)
self.ip_noise_gamma_random_strength = gr.Checkbox(
label="IP noise gamma random strength",
value=self.config.get(
"advanced.ip_noise_gamma_random_strength", False
),
info="Use random strength between 0~ip_noise_gamma for input perturbation noise",
)
self.noise_offset_type.change(
noise_offset_type_change,
inputs=[self.noise_offset_type],
outputs=[
self.noise_offset_original,
self.noise_offset_multires,
],
)
with gr.Row():
self.caption_dropout_every_n_epochs = gr.Number(
label="Dropout caption every n epochs",
value=self.config.get("advanced.caption_dropout_every_n_epochs", 0),
)
self.caption_dropout_rate = gr.Slider(
label="Rate of caption dropout",
value=self.config.get("advanced.caption_dropout_rate", 0),
minimum=0,
maximum=1,
)
self.vae_batch_size = gr.Slider(
label="VAE batch size",
minimum=0,
maximum=32,
value=self.config.get("advanced.vae_batch_size", 0),
step=1,
)
with gr.Group(), gr.Row():
self.save_state = gr.Checkbox(
label="Save training state",
value=self.config.get("advanced.save_state", False),
info="Save training state (including optimizer states etc.) when saving models"
)
self.save_state_on_train_end = gr.Checkbox(
label="Save training state at end of training",
value=self.config.get("advanced.save_state_on_train_end", False),
info="Save training state (including optimizer states etc.) on train end"
)
def list_state_dirs(path):
self.current_state_dir = path if not path == "" else "."
return list(list_dirs(path))
self.resume = gr.Dropdown(
label='Resume from saved training state (path to "last-state" state folder)',
choices=[self.config.get("advanced.state_dir", "")]
+ list_state_dirs(self.current_state_dir),
value=self.config.get("advanced.state_dir", ""),
interactive=True,
allow_custom_value=True,
info="Saved state to resume training from"
)
create_refresh_button(
self.resume,
lambda: None,
lambda: {
"choices": [self.config.get("advanced.state_dir", "")]
+ list_state_dirs(self.current_state_dir)
},
"open_folder_small",
)
self.resume_button = gr.Button(
"📂", elem_id="open_folder_small", visible=(not headless)
)
self.resume_button.click(
get_folder_path,
outputs=self.resume,
show_progress=False,
)
self.resume.change(
fn=lambda path: gr.Dropdown(
choices=[self.config.get("advanced.state_dir", "")]
+ list_state_dirs(path)
),
inputs=self.resume,
outputs=self.resume,
show_progress=False,
)
self.max_data_loader_n_workers = gr.Number(
label="Max num workers for DataLoader",
info="Override number of epoch. Default: 0",
step=1,
minimum=0,
value=self.config.get("advanced.max_data_loader_n_workers", 0),
)
with gr.Row():
self.log_with = gr.Dropdown(
label="Logging",
choices=["","wandb", "tensorboard","all"],
value="",
info="Loggers to use, tensorboard will be used as the default.",
)
self.wandb_api_key = gr.Textbox(
label="WANDB API Key",
value=self.config.get("advanced.wandb_api_key", ""),
placeholder="(Optional)",
info="Users can obtain and/or generate an api key in the their user settings on the website: https://wandb.ai/login",
)
self.wandb_run_name = gr.Textbox(
label="WANDB run name",
value=self.config.get("advanced.wandb_run_name", ""),
placeholder="(Optional)",
info="The name of the specific wandb session",
)
with gr.Group(), gr.Row():
def list_log_tracker_config_files(path):
self.current_log_tracker_config_dir = path if not path == "" else "."
return list(list_files(path, exts=[".json"], all=True))
self.log_tracker_name = gr.Textbox(
label="Log tracker name",
value=self.config.get("advanced.log_tracker_name", ""),
placeholder="(Optional)",
info="Name of tracker to use for logging, default is script-specific default name",
)
self.log_tracker_config = gr.Dropdown(
label="Log tracker config",
choices=[self.config.get("log_tracker_config_dir", "")]
+ list_log_tracker_config_files(self.current_log_tracker_config_dir),
value=self.config.get("log_tracker_config_dir", ""),
info="Path to tracker config file to use for logging",
interactive=True,
allow_custom_value=True,
)
create_refresh_button(
self.log_tracker_config,
lambda: None,
lambda: {
"choices": [self.config.get("log_tracker_config_dir", "")]
+ list_log_tracker_config_files(self.current_log_tracker_config_dir)
},
"open_folder_small",
)
self.log_tracker_config_button = gr.Button(
document_symbol, elem_id="open_folder_small", visible=(not headless)
)
self.log_tracker_config_button.click(
get_any_file_path,
outputs=self.log_tracker_config,
show_progress=False,
)
self.log_tracker_config.change(
fn=lambda path: gr.Dropdown(
choices=[self.config.get("log_tracker_config_dir", "")]
+ list_log_tracker_config_files(path)
),
inputs=self.log_tracker_config,
outputs=self.log_tracker_config,
show_progress=False,
)