forked from bmaltais/kohya_ss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblip2_caption_gui.py
357 lines (310 loc) · 11.5 KB
/
blip2_caption_gui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
from PIL import Image
from transformers import Blip2Processor, Blip2ForConditionalGeneration
import torch
import gradio as gr
import os
from .common_gui import get_folder_path, scriptdir, list_dirs
from .custom_logging import setup_logging
# Set up logging
log = setup_logging()
def load_model():
# Set the device to GPU if available, otherwise use CPU
device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize the BLIP2 processor
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
# Initialize the BLIP2 model
model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16
)
# Move the model to the specified device
model.to(device)
return processor, model, device
def get_images_in_directory(directory_path):
"""
Returns a list of image file paths found in the provided directory path.
Parameters:
- directory_path: A string representing the path to the directory to search for images.
Returns:
- A list of strings, where each string is the full path to an image file found in the specified directory.
"""
import os
# List of common image file extensions to look for
image_extensions = [".jpg", ".jpeg", ".png", ".bmp", ".gif"]
# Generate a list of image file paths in the directory
image_files = [
# constructs the full path to the file
os.path.join(directory_path, file)
# lists all files and directories in the given path
for file in os.listdir(directory_path)
# gets the file extension in lowercase
if os.path.splitext(file)[1].lower() in image_extensions
]
# Return the list of image file paths
return image_files
def generate_caption(
file_list,
processor,
model,
device,
caption_file_ext=".txt",
num_beams=5,
repetition_penalty=1.5,
length_penalty=1.2,
max_new_tokens=40,
min_new_tokens=20,
do_sample=True,
temperature=1.0,
top_p=0.0,
):
"""
Fetches and processes each image in file_list, generates captions based on the image, and writes the generated captions to a file.
Parameters:
- file_list: A list of file paths pointing to the images to be captioned.
- processor: The preprocessor for the BLIP2 model.
- model: The BLIP2 model to be used for generating captions.
- device: The device on which the computation is performed.
- extension: The extension for the output text files.
- num_beams: Number of beams for beam search. Default: 5.
- repetition_penalty: Penalty for repeating tokens. Default: 1.5.
- length_penalty: Penalty for sentence length. Default: 1.2.
- max_new_tokens: Maximum number of new tokens to generate. Default: 40.
- min_new_tokens: Minimum number of new tokens to generate. Default: 20.
"""
for file_path in file_list:
image = Image.open(file_path)
inputs = processor(images=image, return_tensors="pt").to(device, torch.float16)
if top_p == 0.0:
generated_ids = model.generate(
**inputs,
num_beams=num_beams,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
max_new_tokens=max_new_tokens,
min_new_tokens=min_new_tokens,
)
else:
generated_ids = model.generate(
**inputs,
do_sample=do_sample,
top_p=top_p,
max_new_tokens=max_new_tokens,
min_new_tokens=min_new_tokens,
temperature=temperature,
)
generated_text = processor.batch_decode(
generated_ids, skip_special_tokens=True
)[0].strip()
# Construct the output file path by replacing the original file extension with the specified extension
output_file_path = os.path.splitext(file_path)[0] + caption_file_ext
# Write the generated text to the output file
with open(output_file_path, "w", encoding="utf-8") as output_file:
output_file.write(generated_text)
# Log the image file path with a message about the fact that the caption was generated
log.info(f"{file_path} caption was generated")
def caption_images_beam_search(
directory_path,
num_beams,
repetition_penalty,
length_penalty,
min_new_tokens,
max_new_tokens,
caption_file_ext,
):
"""
Captions all images in the specified directory using the provided prompt.
Parameters:
- directory_path: A string representing the path to the directory containing the images to be captioned.
"""
log.info("BLIP2 captionning beam...")
if not os.path.isdir(directory_path):
log.error(f"Directory {directory_path} does not exist.")
return
processor, model, device = load_model()
image_files = get_images_in_directory(directory_path)
generate_caption(
file_list=image_files,
processor=processor,
model=model,
device=device,
num_beams=int(num_beams),
repetition_penalty=float(repetition_penalty),
length_penalty=length_penalty,
min_new_tokens=int(min_new_tokens),
max_new_tokens=int(max_new_tokens),
caption_file_ext=caption_file_ext,
)
def caption_images_nucleus(
directory_path,
do_sample,
temperature,
top_p,
min_new_tokens,
max_new_tokens,
caption_file_ext,
):
"""
Captions all images in the specified directory using the provided prompt.
Parameters:
- directory_path: A string representing the path to the directory containing the images to be captioned.
"""
log.info("BLIP2 captionning nucleus...")
if not os.path.isdir(directory_path):
log.error(f"Directory {directory_path} does not exist.")
return
processor, model, device = load_model()
image_files = get_images_in_directory(directory_path)
generate_caption(
file_list=image_files,
processor=processor,
model=model,
device=device,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
min_new_tokens=int(min_new_tokens),
max_new_tokens=int(max_new_tokens),
caption_file_ext=caption_file_ext,
)
def gradio_blip2_caption_gui_tab(headless=False, directory_path=None):
from .common_gui import create_refresh_button
directory_path = (
directory_path
if directory_path is not None
else os.path.join(scriptdir, "data")
)
current_train_dir = directory_path
def list_train_dirs(path):
nonlocal current_train_dir
current_train_dir = path
return list(list_dirs(path))
with gr.Tab("BLIP2 Captioning"):
gr.Markdown(
"This utility uses BLIP2 to caption files for each image in a folder."
)
with gr.Group(), gr.Row():
directory_path_dir = gr.Dropdown(
label="Image folder to caption (containing the images to caption)",
choices=[""] + list_train_dirs(directory_path),
value="",
interactive=True,
allow_custom_value=True,
)
create_refresh_button(
directory_path_dir,
lambda: None,
lambda: {"choices": list_train_dirs(current_train_dir)},
"open_folder_small",
)
button_directory_path_dir_input = gr.Button(
"📂",
elem_id="open_folder_small",
elem_classes=["tool"],
visible=(not headless),
)
button_directory_path_dir_input.click(
get_folder_path,
outputs=directory_path_dir,
show_progress=False,
)
with gr.Group(), gr.Row():
min_new_tokens = gr.Number(
value=20,
label="Min new tokens",
interactive=True,
step=1,
minimum=5,
maximum=300,
)
max_new_tokens = gr.Number(
value=40,
label="Max new tokens",
interactive=True,
step=1,
minimum=5,
maximum=300,
)
caption_file_ext = gr.Textbox(
label="Caption file extension",
placeholder="Extension for caption file (e.g., .caption, .txt)",
value=".txt",
interactive=True,
)
with gr.Row():
with gr.Tab("Beam search"):
with gr.Row():
num_beams = gr.Slider(
minimum=1,
maximum=16,
value=16,
step=1,
interactive=True,
label="Number of beams",
)
len_penalty = gr.Slider(
minimum=-1.0,
maximum=2.0,
value=1.0,
step=0.2,
interactive=True,
label="Length Penalty",
info="increase for longer sequence",
)
rep_penalty = gr.Slider(
minimum=1.0,
maximum=5.0,
value=1.5,
step=0.5,
interactive=True,
label="Repeat Penalty",
info="larger value prevents repetition",
)
caption_button_beam = gr.Button(
value="Caption images", interactive=True, variant="primary"
)
caption_button_beam.click(
caption_images_beam_search,
inputs=[
directory_path_dir,
num_beams,
rep_penalty,
len_penalty,
min_new_tokens,
max_new_tokens,
caption_file_ext,
],
)
with gr.Tab("Nucleus sampling"):
with gr.Row():
do_sample = gr.Checkbox(label="Sample", value=True)
temperature = gr.Slider(
minimum=0.5,
maximum=1.0,
value=1.0,
step=0.1,
interactive=True,
label="Temperature",
info="used with nucleus sampling",
)
top_p = gr.Slider(
minimum=0,
maximum=1,
value=0.9,
step=0.1,
interactive=True,
label="Top_p",
)
caption_button_nucleus = gr.Button(
value="Caption images", interactive=True, variant="primary"
)
caption_button_nucleus.click(
caption_images_nucleus,
inputs=[
directory_path_dir,
do_sample,
temperature,
top_p,
min_new_tokens,
max_new_tokens,
caption_file_ext,
],
)