-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlog.py
89 lines (77 loc) · 4.21 KB
/
log.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import os
import numpy as np
import json
from termcolor import colored
from eval.eval_detection import ANETdetection
def color(text, txt_color='green', attrs=['bold']):
return colored(text, txt_color, attrs=attrs)
def save_config(config, file_path):
config = vars(config)
for k, v in config.items():
if type(v) is np.ndarray:
config[k] = list(v)
with open(file_path, "w") as fo:
fo.write(json.dumps(config, indent=4))
def initial_log(log_filepath, args):
task_descr = """
{title}
- dataset:\t {dataset}
- optimization stage: {stage}
- description: {descr}
- device: {device}
""".format(
title=color('Temporal Action Localization', 'magenta'),
dataset=color(args.dataset, 'white', attrs=['bold', 'underline']),
stage = args.stage,
descr=args.task_info,
device=args.device,
)
print(task_descr)
if os.path.exists(log_filepath):
os.remove(log_filepath)
with open(log_filepath, 'w') as f:
f.write('\n{sep}\n{info}\n{sep}\n'.format(sep = '*' * 10, info=task_descr))
title = '| {:^6s} | {:^8s} | {:^6s} | {:^6s} | {:^6s} | {:^6s} | {:^6s} | {:^6s} | {:^6s} | {:^6s} | {:^15} | {:^15} | {:^15} | {:^15} | {:^20} |'.format(
'step', 'test_acc', 'loss', '@0.1', '@0.2', '@0.3', '@0.4', '@0.5', '@0.6', '@0.7', 'avg@(0.1:0.5)', 'avg@(0.3:0.7)', 'avg@(0.1:0.7)', 'Elapsed time', 'Now')
f.write('+{sep}+\n'.format(sep = '-'*(len(title)-2)))
f.write('{}\n'.format(title))
f.write('{sep}\n'.format(sep = '-'*len(title)))
def save_best_record(test_info, log_filepath):
with open(log_filepath, 'a') as f:
f.write('| {:^6s} | {:^8s} | {:^6s} | {:^6s} | {:^6s} | {:^6s} | {:^6s} | {:^6s} | {:^6s} | {:^6s} | {:^15} | {:^15} | {:^15} | {:^15} | {:^20} | \n'.format(
str(test_info["step"][-1]), '{:.2f}'.format(100*test_info['test_acc'][-1]), '{:.3f}'.format(test_info['loss'][-1]),
'{:.2f}'.format(100*test_info["mAP@0.1"][-1]), '{:.2f}'.format(100*test_info["mAP@0.2"][-1]), '{:.2f}'.format(100*test_info["mAP@0.3"][-1]),
'{:.2f}'.format(100*test_info["mAP@0.4"][-1]), '{:.2f}'.format(100*test_info["mAP@0.5"][-1]), '{:.2f}'.format(100*test_info["mAP@0.6"][-1]),
'{:.2f}'.format(100*test_info["mAP@0.7"][-1]),
'{:.2f}'.format(100*test_info["average_mAP[0.1:0.5]"][-1]),
'{:.2f}'.format(100*test_info["average_mAP[0.3:0.7]"][-1]),
'{:.2f}'.format(100*test_info["average_mAP[0.1:0.7]"][-1]),
test_info['elapsed'][-1],
test_info['now'][-1],
))
def log_evaluate(args, step, test_acc, logger, json_path, test_info, subset='test'):
# >> evaluate mAP
mapping_subset = {'THUMOS14':{'train':'Validation', 'test':'Test'}}
subset_name = mapping_subset[args.dataset][subset]
gt_path = os.path.join(args.data_path, "gt_full.json")
anet_detection = ANETdetection(gt_path, json_path, subset=subset_name, tiou_thresholds=args.tIoU_thresh,
verbose=False, check_status=False, blocked_videos=args.blocked_videos)
mAP, _ = anet_detection.evaluate()
# >> log mAP
log_folder = 'acc'
test_info['step'].append(step)
test_info['test_acc'].append(test_acc)
if logger is not None:
logger.log_value('{}/Test accuracy'.format(log_folder), test_acc, step)
test_info["average_mAP[0.1:0.7]"].append(mAP[:7].mean())
test_info["average_mAP[0.1:0.5]"].append(mAP[:5].mean())
test_info["average_mAP[0.3:0.7]"].append(mAP[2:7].mean())
for i in range(len(args.tIoU_thresh)):
test_info["mAP@{:.1f}".format(args.tIoU_thresh[i])].append(mAP[i])
if logger is not None:
logger.log_value('{}/average mAP[0.1:0.7]'.format(log_folder), mAP[:7].mean(), step)
logger.log_value('{}/average mAP[0.1:0.5]'.format(log_folder), mAP[:5].mean(), step)
logger.log_value('{}/average mAP[0.3:0.7]'.format(log_folder), mAP[2:7].mean(), step)
for i in range(len(args.tIoU_thresh)):
logger.log_value('{}/mAP@{:.1f}'.format(log_folder, args.tIoU_thresh[i]), mAP[i], step)
return test_info["average_mAP[0.1:0.7]"][-1]