-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_models_contam.py
154 lines (124 loc) · 4.74 KB
/
train_models_contam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
"""
This program trains backdoored ResNet for CIFAR-10.
Author: Zhen Xiang
Date: 2/26/2019
"""
from __future__ import absolute_import
from __future__ import print_function
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import os
import argparse
import matplotlib.pyplot as plt
import numpy as np
from src.resnet import ResNet18
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training (with backdoor)')
parser.add_argument('--lr', default=0.001, type=float, help='learning rate')
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.ToTensor()
])
transform_test = transforms.Compose([
transforms.ToTensor()
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
# Load in attack data
if not os.path.isdir('attacks'):
print ('Attack images not found, please craft attack images first!')
sys.exit(0)
train_attacks = torch.load('./attacks/train_attacks')
train_images_attacks = train_attacks['image']
train_labels_attacks = train_attacks['label']
test_attacks = torch.load('./attacks/test_attacks')
test_images_attacks = test_attacks['image']
test_labels_attacks = test_attacks['label']
testset_attacks = torch.utils.data.TensorDataset(test_images_attacks, test_labels_attacks)
# Poison the training set
image_dtype = trainset.data.dtype
train_images_attacks = np.rint(np.transpose(train_images_attacks.numpy()*255, [0, 2, 3, 1])).astype(image_dtype)
trainset.data = np.concatenate((trainset.data, train_images_attacks))
trainset.targets = np.concatenate((trainset.targets, train_labels_attacks))
ind_train = torch.load('./attacks/ind_train')
trainset.data = np.delete(trainset.data, ind_train, axis=0)
trainset.targets = np.delete(trainset.targets, ind_train, axis=0)
# Load in the datasets
trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
attackloader = torch.utils.data.DataLoader(testset_attacks, batch_size=100, shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# Model
print('==> Building model..')
net = ResNet18()
net = net.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=args.lr)
def train(epoch):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
acc = 100. * correct / total
print('Train ACC: %.3f' % acc)
return net
def test(epoch):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
acc = 100. * correct / total
print('Test ACC: %.3f' % acc)
def test_attack(epoch):
net.eval()
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(attackloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
acc = 100. * correct / total
print('Attack success rate: %.3f' % acc)
for epoch in range(start_epoch, start_epoch+100):
model_contam = train(epoch)
test(epoch)
test_attack(epoch)
# Save model
if not os.path.isdir('contam'):
os.mkdir('contam')
torch.save(model_contam.state_dict(), './contam/model_contam.pth')