MASNet: A Robust Deep Marine Animal Segmentation Network(Paper)
The Pytorch Implementation of ''MASNet: A Robust Deep Marine Animal Segmentation Network''
In this project, we use Ubuntu 16.04.5, Python 3.7, Pytorch 1.7.1 and two NVIDIA RTX 2080Ti GPU.
Download the pretrained model pre-trained model.
Check the model and image pathes in config.yaml and scripts/test.py, then run:
python test.py
To train the model, you need to first prepare our RMAS dataset, or MAS3K dataset MAS3K dataset.
Check the dataset path in config.yaml, and then run:
python train.py
If you find MASNet is useful in your research, please cite our paper:
@ARTICLE{10113781,
author={Fu, Zhenqi and Chen, Ruizhe and Huang, Yue and Cheng, En and Ding, Xinghao and Ma, Kai-Kuang},
journal={IEEE Journal of Oceanic Engineering},
title={MASNet: A Robust Deep Marine Animal Segmentation Network},
year={2023},
pages={1-12},
doi={10.1109/JOE.2023.3252760}}