forked from leo-usa/MemoryBot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmemorybot.py
252 lines (210 loc) · 9.87 KB
/
memorybot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
"""
This is a Python script that serves as a frontend for a conversational AI model built with the `langchain` and `llms` libraries.
The code creates a web application using Streamlit, a Python library for building interactive web apps.
"""
# Import necessary libraries
import streamlit as st
from PIL import Image
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationEntityMemory
from langchain.chains.conversation.prompt import ENTITY_MEMORY_CONVERSATION_TEMPLATE
from langchain.llms import OpenAI
from langchain.callbacks import get_openai_callback
import re
def is_four_digit_number(string):
pattern = r'^\d{4}$' # Matches exactly four digits
return bool(re.match(pattern, string))
#@st.cache(allow_output_mutation=True)
#def get_word_count():
# return 0
def count_words(string):
words = string.split()
return len(words)
# Set Streamlit page configuration
im = Image.open('sricon.png')
st.set_page_config(page_title=' 🤖ChatGPT with Memory🧠', layout='wide', page_icon = im)
# Initialize session states
if "generated" not in st.session_state:
st.session_state["generated"] = []
if "past" not in st.session_state:
st.session_state["past"] = []
if "input" not in st.session_state:
st.session_state["input"] = ""
if "stored_session" not in st.session_state:
st.session_state["stored_session"] = []
if "just_sent" not in st.session_state:
st.session_state["just_sent"] = False
if "temp" not in st.session_state:
st.session_state["temp"] = ""
if "count" not in st.session_state:
st.session_state["count"] = 0
if "word_count" not in st.session_state:
st.session_state["word_count"] = 0
if "paid" not in st.session_state:
st.session_state["paid"] = False
if "cost" not in st.session_state:
st.session_state["cost"] = 0.0
def clear_text():
st.session_state["temp"] = st.session_state["input"]
st.session_state["input"] = ""
# Define function to get user input
def get_text():
"""
Get the user input text.
Returns:
(str): The text entered by the user
"""
input_text = st.text_input("You: ", st.session_state["input"], key="input",
placeholder="Your AI assistant here! Ask me anything ...请在这里打字问问题吧",
on_change=clear_text,
label_visibility='hidden')
input_text = st.session_state["temp"]
return input_text
# Define function to start a new chat
def new_chat():
"""
Clears session state and starts a new chat.
"""
save = []
for i in range(len(st.session_state['generated'])-1, -1, -1):
save.append("User:" + st.session_state["past"][i])
save.append("Bot:" + st.session_state["generated"][i])
st.session_state["stored_session"].append(save)
st.session_state["generated"] = []
st.session_state["past"] = []
st.session_state["input"] = ""
st.session_state.entity_memory.store = {}
st.session_state.entity_memory.buffer.clear()
# Set up sidebar with various options
#with st.sidebar.expander("🛠️ ", expanded=False):
# # Option to preview memory store
# if st.checkbox("Preview memory store"):
# with st.expander("Memory-Store", expanded=False):
# st.session_state.entity_memory.store
# # Option to preview memory buffer
# if st.checkbox("Preview memory buffer"):
# with st.expander("Bufffer-Store", expanded=False):
# st.session_state.entity_memory.buffer
# MODEL = st.selectbox(label='Model', options=['gpt-3.5-turbo','text-davinci-003','text-davinci-002','code-davinci-002'])
# K = st.number_input(' (#)Summary of prompts to consider',min_value=3,max_value=1000)
MODEL = "gpt-3.5-turbo-0613"
K = 10
with st.sidebar:
st.markdown("---")
st.markdown("# About")
st.markdown(
"ChatGPTm is ChatGPT added memory. "
"It can do anything you asked and also remember you."
)
st.markdown(
"This tool is a work in progress. "
)
st.markdown("---")
st.markdown("# 简介")
st.markdown(
"ChatGPTm就是增加了记忆的ChatGPT。 "
"你可以在右边的对话框问任何问题。"
)
st.markdown(
"希望给国内没法注册使用ChatGPT的朋友带来方便!"
)
# Set up the Streamlit app layout
st.title("🤖 ChatGPT with Memory 🧠")
#st.subheader(" Powered by 🦜 LangChain + OpenAI + Streamlit")
hide_default_format = """
<style>
#MainMenu {visibility: hidden; }
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_default_format, unsafe_allow_html=True)
# Ask the user to enter their OpenAI API key
#API_O = st.sidebar.text_input("API-KEY", type="password")
API_O = st.secrets["OPENAI_API_KEY"]
# Session state storage would be ideal
if API_O:
# Create an OpenAI instance
llm = OpenAI(temperature=0,
openai_api_key=API_O,
model_name=MODEL,
verbose=False)
# Create a ConversationEntityMemory object if not already created
if 'entity_memory' not in st.session_state:
st.session_state.entity_memory = ConversationEntityMemory(llm=llm, k=K )
# Create the ConversationChain object with the specified configuration
Conversation = ConversationChain(
llm=llm,
prompt=ENTITY_MEMORY_CONVERSATION_TEMPLATE,
memory=st.session_state.entity_memory
)
else:
st.sidebar.warning('API key required to try this app.The API key is not stored in any form.')
# st.stop()
# Add a button to start a new chat
#st.sidebar.button("New Chat", on_click = new_chat, type='primary')
# Get the user input
user_input = get_text()
# Generate the output using the ConversationChain object and the user input, and add the input/output to the session
if user_input:
st.session_state["count"] += 1
if st.session_state["count"] < 4 or st.session_state["paid"] == True:
with get_openai_callback() as cb:
output = Conversation.run(input=user_input)
st.session_state.past.append(user_input)
st.session_state.generated.append(output)
st.session_state["cost"] += cb.total_cost
# st.session_state["word_count"] = st.session_state["word_count"] * 2 + count_words(user_input) + count_words(output)
else:
st.session_state.past.append(user_input)
if is_four_digit_number(user_input) :
st.session_state["paid"] = True
st.session_state.generated.append("谢谢支付,你可以继续使用了")
else:
st.session_state.generated.append("请用下面的支付码支付¥20后才可以再继续使用。支付时请记下转账单号的最后4位数字,在对话框输入这四位数字")
# Allow to download as well
download_str = []
# Display the conversation history using an expander, and allow the user to download it
with st.expander("Conversation", expanded=True):
for i in range(len(st.session_state['generated'])-1, -1, -1):
st.info(st.session_state["past"][i],icon="🧐")
st.success(st.session_state["generated"][i], icon="🤖")
download_str.append(st.session_state["past"][i])
download_str.append(st.session_state["generated"][i])
# Can throw error - requires fix
download_str = '\n'.join(download_str)
# word_count += count_words(download_str)
if download_str:
st.download_button('Download 下载',download_str)
# Display stored conversation sessions in the sidebar
for i, sublist in enumerate(st.session_state.stored_session):
with st.sidebar.expander(label= f"Conversation-Session:{i}"):
st.write(sublist)
# Allow the user to clear all stored conversation sessions
if st.session_state.stored_session:
if st.sidebar.checkbox("Clear-all"):
del st.session_state.stored_session
# Load the images
image1 = Image.open("wechatqrcode_leo.jpg")
image2 = Image.open("zhifubaoqrcode_kyle.jpg")
image3 = Image.open("paypalqrcode.png")
image4 = Image.open("drpang_shipinhao2.jpg")
# Display the image with text on top
st.write("I have to pay OpenAI API for each of your usage. Please consider donating $5 to keep this service alive! Thank you!")
st.write("我已经为你的这次使用支付了:", round (st.session_state["cost"]*7*3, 2), "人民币")
st.write("我是史丹福机器人庞博士,我提供此应用的初衷是让国内的人也可以体验使用增加了记忆的ChatGPT。我在为你的每次使用支付调用OpenAI API的费用,请扫码微信或支付宝支付¥20人民币可以使用一天。")
st.write("长期用户可交¥1688年费(和OpenAI付费用户收费一致),填上你的邮箱,我会发给你专属的小程序,记忆力是这个的10倍。")
st.write("我在我的《史丹福机器人庞博士》微信视频号也有很多关于ChatGPT和怎样使用ChatGPT魔法的视频,还有怎么使用这个小程序的视频,欢迎白嫖。也有系统的收费课程《零基础精通掌握ChatGPT魔法》给愿意知识付费的同学深入学习。 ")
st.write("所有6节课在我的视频号主页的直播回放里, 每节课99元,第一节课大家可以免费试听。 如果想购买全部6节课,有50%折扣,只要299元。可以在我的视频号主页私信我购买,注明ChatGPT课程。")
#st.image(img, caption=None, width=200)
# Divide the app page into two columns
col1, col2, col3 = st.columns(3)
# Display the first image in the first column
with col1:
st.image(image1, caption="微信支付", width=200)
# Display the second image in the second column
with col2:
st.image(image2, caption="支付宝", width=200)
# Display the third image in the third column
with col3:
st.image(image3, caption="PayPal", width=200)
st.image(image4, caption="史丹福机器人庞博士视频号,微信扫码前往", width=200)