|
23 | 23 | "\n",
|
24 | 24 | "from sklearn.preprocessing import OneHotEncoder\n",
|
25 | 25 | "enc = OneHotEncoder()\n",
|
26 |
| - "nb_x_train = enc.fit_transform(x_train)\n", |
27 |
| - "nb_x_test = enc.transform(x_test)" |
| 26 | + "x_train_one_hot = enc.fit_transform(x_train)\n", |
| 27 | + "x_test_one_hot = enc.transform(x_test)" |
28 | 28 | ]
|
29 | 29 | },
|
30 | 30 | {
|
|
46 | 46 | "from sklearn.naive_bayes import MultinomialNB\n",
|
47 | 47 | "\n",
|
48 | 48 | "clf = MultinomialNB()\n",
|
49 |
| - "clf.fit(nb_x_train, y_train)\n", |
50 |
| - "print(np.mean(y_test == clf.predict(nb_x_test)))" |
| 49 | + "clf.fit(x_train_one_hot, y_train)\n", |
| 50 | + "print(np.mean(y_test == clf.predict(x_test_one_hot)))" |
51 | 51 | ]
|
52 | 52 | },
|
53 | 53 | {
|
|
61 | 61 | "name": "stdout",
|
62 | 62 | "output_type": "stream",
|
63 | 63 | "text": [
|
| 64 | + "1.0\n", |
64 | 65 | "1.0\n"
|
65 | 66 | ]
|
66 | 67 | }
|
|
69 | 70 | "from sklearn.tree import DecisionTreeClassifier\n",
|
70 | 71 | "\n",
|
71 | 72 | "clf = DecisionTreeClassifier()\n",
|
| 73 | + "\n", |
72 | 74 | "clf.fit(x_train, y_train)\n",
|
73 |
| - "print(np.mean(y_test == clf.predict(x_test)))" |
| 75 | + "print(np.mean(y_test == clf.predict(x_test)))\n", |
| 76 | + "\n", |
| 77 | + "clf.fit(x_train_one_hot, y_train)\n", |
| 78 | + "print(np.mean(y_test == clf.predict(x_test_one_hot)))" |
74 | 79 | ]
|
75 | 80 | },
|
76 | 81 | {
|
|
84 | 89 | "name": "stdout",
|
85 | 90 | "output_type": "stream",
|
86 | 91 | "text": [
|
87 |
| - "1.0\n" |
| 92 | + "1.0\n", |
| 93 | + "0.998116760829\n" |
88 | 94 | ]
|
89 | 95 | }
|
90 | 96 | ],
|
91 | 97 | "source": [
|
92 | 98 | "from sklearn.svm import SVC\n",
|
93 | 99 | "\n",
|
94 | 100 | "clf = SVC()\n",
|
| 101 | + "\n", |
95 | 102 | "clf.fit(x_train, y_train)\n",
|
96 |
| - "print(np.mean(y_test == clf.predict(x_test)))" |
| 103 | + "print(np.mean(y_test == clf.predict(x_test)))\n", |
| 104 | + "\n", |
| 105 | + "clf.fit(x_train_one_hot, y_train)\n", |
| 106 | + "print(np.mean(y_test == clf.predict(x_test_one_hot)))" |
97 | 107 | ]
|
98 | 108 | },
|
99 | 109 | {
|
|
107 | 117 | "name": "stdout",
|
108 | 118 | "output_type": "stream",
|
109 | 119 | "text": [
|
110 |
| - "0.956214689266\n" |
| 120 | + "0.961393596987\n", |
| 121 | + "0.999529190207\n" |
111 | 122 | ]
|
112 | 123 | }
|
113 | 124 | ],
|
114 | 125 | "source": [
|
115 | 126 | "from sklearn.linear_model import LogisticRegression\n",
|
116 | 127 | "\n",
|
117 | 128 | "clf = LogisticRegression()\n",
|
| 129 | + "\n", |
118 | 130 | "clf.fit(x_train, y_train)\n",
|
119 |
| - "print(np.mean(y_test == clf.predict(x_test)))" |
| 131 | + "print(np.mean(y_test == clf.predict(x_test)))\n", |
| 132 | + "\n", |
| 133 | + "clf.fit(x_train_one_hot, y_train)\n", |
| 134 | + "print(np.mean(y_test == clf.predict(x_test_one_hot)))" |
120 | 135 | ]
|
121 | 136 | }
|
122 | 137 | ],
|
|
141 | 156 | }
|
142 | 157 | },
|
143 | 158 | "nbformat": 4,
|
144 |
| - "nbformat_minor": 1 |
| 159 | + "nbformat_minor": 0 |
145 | 160 | }
|
0 commit comments