Skip to content

Commit fecbef1

Browse files
committed
Update _Dist/NeuralNetworks/b_TraditionalML
1 parent 0c3aaa6 commit fecbef1

File tree

1 file changed

+25
-10
lines changed

1 file changed

+25
-10
lines changed

_Dist/NeuralNetworks/b_TraditionalML/TraditionalML.ipynb

+25-10
Original file line numberDiff line numberDiff line change
@@ -23,8 +23,8 @@
2323
"\n",
2424
"from sklearn.preprocessing import OneHotEncoder\n",
2525
"enc = OneHotEncoder()\n",
26-
"nb_x_train = enc.fit_transform(x_train)\n",
27-
"nb_x_test = enc.transform(x_test)"
26+
"x_train_one_hot = enc.fit_transform(x_train)\n",
27+
"x_test_one_hot = enc.transform(x_test)"
2828
]
2929
},
3030
{
@@ -46,8 +46,8 @@
4646
"from sklearn.naive_bayes import MultinomialNB\n",
4747
"\n",
4848
"clf = MultinomialNB()\n",
49-
"clf.fit(nb_x_train, y_train)\n",
50-
"print(np.mean(y_test == clf.predict(nb_x_test)))"
49+
"clf.fit(x_train_one_hot, y_train)\n",
50+
"print(np.mean(y_test == clf.predict(x_test_one_hot)))"
5151
]
5252
},
5353
{
@@ -61,6 +61,7 @@
6161
"name": "stdout",
6262
"output_type": "stream",
6363
"text": [
64+
"1.0\n",
6465
"1.0\n"
6566
]
6667
}
@@ -69,8 +70,12 @@
6970
"from sklearn.tree import DecisionTreeClassifier\n",
7071
"\n",
7172
"clf = DecisionTreeClassifier()\n",
73+
"\n",
7274
"clf.fit(x_train, y_train)\n",
73-
"print(np.mean(y_test == clf.predict(x_test)))"
75+
"print(np.mean(y_test == clf.predict(x_test)))\n",
76+
"\n",
77+
"clf.fit(x_train_one_hot, y_train)\n",
78+
"print(np.mean(y_test == clf.predict(x_test_one_hot)))"
7479
]
7580
},
7681
{
@@ -84,16 +89,21 @@
8489
"name": "stdout",
8590
"output_type": "stream",
8691
"text": [
87-
"1.0\n"
92+
"1.0\n",
93+
"0.998116760829\n"
8894
]
8995
}
9096
],
9197
"source": [
9298
"from sklearn.svm import SVC\n",
9399
"\n",
94100
"clf = SVC()\n",
101+
"\n",
95102
"clf.fit(x_train, y_train)\n",
96-
"print(np.mean(y_test == clf.predict(x_test)))"
103+
"print(np.mean(y_test == clf.predict(x_test)))\n",
104+
"\n",
105+
"clf.fit(x_train_one_hot, y_train)\n",
106+
"print(np.mean(y_test == clf.predict(x_test_one_hot)))"
97107
]
98108
},
99109
{
@@ -107,16 +117,21 @@
107117
"name": "stdout",
108118
"output_type": "stream",
109119
"text": [
110-
"0.956214689266\n"
120+
"0.961393596987\n",
121+
"0.999529190207\n"
111122
]
112123
}
113124
],
114125
"source": [
115126
"from sklearn.linear_model import LogisticRegression\n",
116127
"\n",
117128
"clf = LogisticRegression()\n",
129+
"\n",
118130
"clf.fit(x_train, y_train)\n",
119-
"print(np.mean(y_test == clf.predict(x_test)))"
131+
"print(np.mean(y_test == clf.predict(x_test)))\n",
132+
"\n",
133+
"clf.fit(x_train_one_hot, y_train)\n",
134+
"print(np.mean(y_test == clf.predict(x_test_one_hot)))"
120135
]
121136
}
122137
],
@@ -141,5 +156,5 @@
141156
}
142157
},
143158
"nbformat": 4,
144-
"nbformat_minor": 1
159+
"nbformat_minor": 0
145160
}

0 commit comments

Comments
 (0)