forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_amp_case.py
78 lines (62 loc) · 2.09 KB
/
test_amp_case.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from dygraph_to_static_utils import (
Dy2StTestBase,
test_ast_only,
test_pir_only,
)
import paddle
np.random.seed(1)
def func(x):
y = x[0:3].astype("float32")
return y
class TestAmp64Case(Dy2StTestBase):
def _run_static(self):
static_func = paddle.jit.to_static(func)
x = paddle.randn((10, 10)).astype("float64")
with paddle.amp.auto_cast(True, level="O2"):
dy_out = func(x)
st_out = static_func(x)
np.testing.assert_allclose(dy_out.numpy(), st_out.numpy())
def test_ast_to_func(self):
self._run_static()
class Net(paddle.nn.Layer):
def __init__(self) -> None:
super().__init__()
self.linear = paddle.nn.Linear(5, 5)
def forward(self, x):
out = self.linear(x)
with paddle.amp.auto_cast(level='O2'):
out = self.linear(out)
return out
class TestPartialAutoCast(Dy2StTestBase):
@test_ast_only
@test_pir_only
def test_run(self):
if not paddle.base.core.is_compiled_with_cuda():
return
x = paddle.randn([5, 5], 'float32')
net = Net()
net = paddle.jit.to_static(net)
out = net(x)
main = net.forward.main_program
cast_op_count = 0
for op in main.global_block().ops:
if op.name() == 'pd_op.cast':
cast_op_count += 1
np.testing.assert_equal(cast_op_count, 3)
if __name__ == '__main__':
unittest.main()