forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmobilenet.py
executable file
·64 lines (45 loc) · 1.83 KB
/
mobilenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#!/usr/bin/env python3.8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from paddle.base.core import AnalysisConfig, create_paddle_predictor
def main():
config = set_config()
predictor = create_paddle_predictor(config)
data, result = parse_data()
input_names = predictor.get_input_names()
input_tensor = predictor.get_input_tensor(input_names[0])
shape = (1, 3, 300, 300)
input_data = data[:-4].astype(np.float32).reshape(shape)
input_tensor.copy_from_cpu(input_data)
predictor.zero_copy_run()
output_names = predictor.get_output_names()
output_tensor = predictor.get_output_tensor(output_names[0])
output_data = output_tensor.copy_to_cpu()
def set_config():
config = AnalysisConfig("")
config.set_model("model/__model__", "model/__params__")
config.switch_use_feed_fetch_ops(False)
config.switch_specify_input_names(True)
config.enable_profile()
return config
def parse_data():
"""parse input and output data"""
with open('data/data.txt', 'r') as fr:
data = np.array([float(_) for _ in fr.read().split()])
with open('data/result.txt', 'r') as fr:
result = np.array([float(_) for _ in fr.read().split()])
return (data, result)
if __name__ == "__main__":
main()