forked from lazyprogrammer/machine_learning_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogistic_xor.py
74 lines (57 loc) · 1.51 KB
/
logistic_xor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# logisitc regression classifier for the XOR problem.
#
# the notes for this class can be found at:
# https://deeplearningcourses.com/c/data-science-logistic-regression-in-python
# https://www.udemy.com/data-science-logistic-regression-in-python
import numpy as np
import matplotlib.pyplot as plt
N = 4
D = 2
# XOR
X = np.array([
[0, 0],
[0, 1],
[1, 0],
[1, 1],
])
T = np.array([0, 1, 1, 0])
# add a column of ones
# ones = np.array([[1]*N]).T
ones = np.ones((N, 1))
# add a column of xy = x*y
xy = np.matrix(X[:,0] * X[:,1]).T
Xb = np.array(np.concatenate((ones, xy, X), axis=1))
# randomly initialize the weights
w = np.random.randn(D + 2)
# calculate the model output
z = Xb.dot(w)
def sigmoid(z):
return 1/(1 + np.exp(-z))
Y = sigmoid(z)
# calculate the cross-entropy error
def cross_entropy(T, Y):
E = 0
for i in xrange(N):
if T[i] == 1:
E -= np.log(Y[i])
else:
E -= np.log(1 - Y[i])
return E
# let's do gradient descent 100 times
learning_rate = 0.001
error = []
for i in xrange(10000):
e = cross_entropy(T, Y)
error.append(e)
if i % 100 == 0:
print e
# gradient descent weight udpate with regularization
# w += learning_rate * ( np.dot((T - Y).T, Xb) - 0.01*w )
w += learning_rate * ( Xb.T.dot(T - Y) - 0.01*w )
# recalculate Y
Y = sigmoid(Xb.dot(w))
plt.plot(error)
plt.title("Cross-entropy per iteration")
plt.show()
print "Final w:", w
print "Final classification rate:", 1 - np.abs(T - np.round(Y)).sum() / N